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We investigate the probability distributioRy(r) of the radius of gyratiom of a polymer chain of siz&
with excluded-volume interactions at infinite temperature. This function shows the geometric contribution to
the tricritical coil-globule transition of self-avoiding walks; it indicates that the relevant order paranudter
the transition is a power of the densijiy=Nr~9. The theoretical form of the distributioBy(t) of this order
parameter is deduced from scaling arguments, and supported by numerical simulations. Intending to probe the
contribution of the different subsets of conformations, namely, globule, coil and stretch, we suppfgttent
with a formal Boltzmann factor; this model undergoes a tricritical coil-globule transition which is solved
exactly. We show a nontrivial finite-size scaling feg(t) and analyze its convergence toward the thermody-
namic limit. Due to the presence Ry (t) of a diverging factot® with c< — 1, this convergence happens to be
tragically slow. As a result, the scaling behavior observed in numerical simulations is qualitatively different
from its thermodynamic limit, and we relate the critical exponents of the geometric transition in the thermo-
dynamic limit and the effective exponents observed at finite $&8063-651X97)12010-4

PACS numbdss): 36.20.Ey, 64.60.Kw, 75.40.Mg

[. INTRODUCTION chain of N monomers. In order to obtain more statistical
information about the conformations, here we investigate the
Since the pioneering work of de Genr{d3, much of the distribution of the random variable¢= JINr=% the usual
literature has been devoted to the status of the coil-globulguantity ¢ is nothing but the first moment of this distribu-
transition. Even though its tricritical nature soon becameion. The simple relation between the random variahles
commonly accepted, achieving a complete scaling theorgandr allows us to focus orPy(r) without losing any infor-
motivated many controversial papgg and is still an open mation. HerePy(r)dr denotes the probability that a SAW of
problem. All the exponents were theoretically calculated insize N has a radius of gyration betweenand r+dr; it
two dimensions for one specific modgd], but it has not completely describes the geometric properties of SAWs and
been possible to solve more realistic cases, even the simplgstuniversal for linear polymers.
ones. Victor and Lhuillier [4] already investigated the form of
The present paper raises the following question: whichPn(r) in the domain where the radius of gyration scales as
properties of the coil-globule transition come from the geo-f ~N" (v being the usual Flory expongniThey proposed a
metric structure of the chaifi.e., the linear ordering of the Scaling law forPy(r) in two dimensions which agrees with
monomers along the chain and the excluded-volume effectdheir numerical simulation data. This work was soon repro-
and which ones come from specific interactions betweerfluced in three dimensions by Bishop and Sa[tg] but still
monomers typically van der Waals and Coulonth We in this rather narrow interval of values of Please note that

bring about some answers by studying the statistics of thd/® henceforth denote- the identity of the leading orders up

: : : : fo some multiplicative constants where, unless explicitly
radius of gyration, using a phenomeml()g'cal _ap_proach SLmeentioned, the asymptotic ordering is associated with the
ported by a numerical simulation. This analysis indeed PrOf it N oo

V|d(ta_s un|versall|n5|?htt)s labout_'lthe dgfer(tantt crlgs(sjes of tcr? nfor- The radius of gyration describes the nature of the confor-
mations (namely globule, coil, and stretchand on the mations of the chain. It increases from its minimum value

transitions between them. _ 1d ¢ i : —

. ; . . . I min=minN™ to its maximum value ,,,= see Table |
Res'tnc':tmg to a lattice description, geometnp .propert|esr8“r'“th§"\‘/'”alue Off imin in three dimensin(;?)xsfhmgic\:lo(nformations
ared T'?'Cke?t usdlng tthg t\rl]ve”éTV?/W” Zellf-avmdmgél walk are commonly divided into three classes, namely globule,
model ( ereafter denoted the Model, as u};u_ IS coil, and stretch, according to their own radius of gyration

worth noticing that the simple SAW description coincides

with the infinite temperature limit of any realistic model in- globule coil stretch
cluding interactions between monomers and solvent. In that )

sense, geometric properties are universal insofar as they Idy~ r~N r~N
behind any realistic model but do not depend on the assoCBecause the polymer changes continuously from a globule
ated interactions. The relevant order parameter for describingto a coil and from a coil into a stretch, the limits between
the coil-globule transition is generally taken to bethese classes are rather fuzzy. More precisely, a clear-cut
Y= \/NRga, whereRg is the usual radius of gyration de- distinction between the three regimes is relevamiy in the
fined as the root-mean-square over all the conformations ahermodynamic limit N— o) but clearlynot at finite sizeN.

the random quantity r=N"*\=;_;-;<ul[r;i—1j|[* for a  We suggest that the distributidP(r) allows one to define
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TABLE |. Numerical values of the connectivity constaptend g result, the probability(r) scalesup to some normaliza-
o of a self-avoiding walk on a cubic lattice for coil and compact tjgn constantsas

globular conformations, respectively,,, denotes the maximum

value oft, andg(tnay is given in Fig. 1. The value oft comes globule PN(r)dr~[p(Nrfd)]Nd(Nr*d)z[p(p)]Ndp.
from exact enumeratiof8] and w=(2d/e) according to Ref[21]. )
Here we used the slithering snake algorithm as it involves the same

lattice model(a monomer occupies one site and the length bond isThis assertion involves only the leading behavior of Me

equal to ). dependence oPy(r) in the thermodynamic limiN—o, as
will be discussed below.
Lrmin timax 9(tmar M ® In(u/w) (b) In the stretch phase, the length paraméted;; /|j —i|

is defined as the ratio of the distantg between two mono-
mersi and | to their distancdj—i| along the chain; the
relevant scale invariance here is thenslational invariance

three phases and associated transitions. The issue is then@9Nnd the chain;As a result, the parametes constant, and
properly carry out the thermodynamic limit of the distribu- N€Nce equal =ryy/N, wherer,y is the so-called end-to-

tion in order to bring out the phase transitions and characte2nd distance. The same reasoning is still valid when replac-
ize their nature in the usual thermodynamic sense. ing the partial distance; by the partial radius of gyration

In Sec. II, we recall scaling arguments which indicate theij - ThiS invariance is supplemented by the fact that, due to
relevant form ofPy(r) and lead us to introduce a new vari- the absence of excluded-volume effects between subsections

ablet; we believe its first momerit) to be the most suitable of the stretch, the chain can here be considered as a succes-
order parameter for the coil-globule transition. In Sec. I1I, weSion ofindependent partsvhich leads to the following scal-
give the complete theoretical structure of the distribution

0.4805 1563 0.77/60.015 4.683 221 0.751

ing behavior:

Pn(t) of the state variablé. Section IV is devoted to a N

TR tretch dr~ /N)]™d(r/N). 2
numerical justification of the structure &fy(t), and to the stretch Pu(rdr~[a(r/N)7d(r/N) @
measure of a new geometric exponentappearing in it; (c) Conversely, the coil phase is dominated togctal
moreover, we show a novel fact contributing toPy(t).  conformations(in a statistically defined meaningf fractal

In Sec. V, we prove by introducing a fictitiousiowever  dimension 14. HencePy(r) exhibits the following scaling
strongly related with more realistic modeBoltzmann fac-  pehavior:

tor that the structure oPy(t) induces an intrinsic coil-

globule transition which we claim to be the geometric foun- coil Pyn(r)dr~II(rN~")d(rN™%). (3)
dation of real coil-globule transitions. In Sec. VI, we .
examine the scaling properties Bf,(t) and of its moments; Because the three kinds of behavigtobule, stretch and

we also compute their thermodynamic limit. In Sec. VII we coil) appear as three limiting cases ofuaique underlying
deduce the critical exponenis and ¢ for this transition; we ~ distribution, some strong matching conditions first intro-
discuss the nature of the transition according to the positioduced in Ref[6] must be satisfied. Let us recall them briefly.
of the exponent with respect to a threshold vale& = —1.  Writing the distributionp(p) as

The observed value<—1 leads to an anomalous tricritical G

scaling behavior. Section VIl is devoted to finite-size prob- p(p)=e , (4)
lems. Due to the value<—1, it is shown that the thermo- . _

dynamic limit is reached so slowly that it cannot be de—and the distributioI(rN"") as
scribed by numerical data and cannot predict observable
results (except for unrealistic chain lengths di~10%°
monomers These data bring out an effective scaling behav-and assuming that the functid is a power lawG(p) ~ p®

ior characterized by two different values of the exponent i ;
in contrast to the thermodynamic scaling behavior. The pre'?u vanishing density, Eqg1), (3), (4) and(5) lead to

vious discussion provides the framework for a correct and
exhaustive analysis of our numerical data, which is presented

(rN~")=e f(N""), (5

~NG(Nr~ %)

e ~e f(IN"Y) (6)

in Sec. IX. (still identifying the leading order of thé&l dependences
This leads to
Il. SCALING HYPOTHESIS IN THE THREE PHASES
f(IN"")~N(Nr~9)a~(rN~") "9, (7)

The scaling laws for the distributioRy(r) have already
been introduced in preceding papg8$ on the basis of phe- from which it follows that
nomenological arguments; here we give further justifications
based on the differing statistical scale invariances inside each 1 )
of the three classes of conformations, which in addition -1
physically comfort their different status.
(a) The globule phase is dominated byatially homoge- Hence, we may rewrite Eq¢l) and(3) as follows:
neous conformations. This means that the local averaged N
density does not depend on the position inside a given glob- — AN/t L(xd=1)
ule and hence coincides with its global dengity Nr~9. As globule p(ﬁ) e ' ©
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_ r AN U1 the conformations In view of Eq.(17), we shall rather use
coil I} G| ~e (/N : (10)  the state variablé given in Eq.(12).
whereA is a model-dependent constant. The new state vari- Ill. COMPLETE STRUCTURE
able OF THE DISTRIBUTION Py(t)
t=plrd-1 (12) Equation (17) arose from matching conditions between
scaling arguments based on the homogeneous nature of the
arises in a natural way, and we finally come to globule and stretch conformations on one hand, and on the
N fractal nature of the coil conformations on the other hand. In
At order to highlight all the relevant contributions involved in
globule p(ﬁ) € (12 the thermodynamic behavior, we now design a theoretical
expression foPy(t) which remains valid outside the match-
) r At ing domain and thus generalizes E6). The extra contribu-
coil 1IN} G| ~e ™" (13 tions with respect to Eq17) will contain the exponents of

the geometric transition claimed above and give access to the
Such a procedure may be carried out between the coil angcaling landscape of the whole space of conformations.
the stretch behaviors as well leading to It is well known[8] that the total numbeX  of SAW’s of
lengthN is given by

. r N 2%
coil II W)Ne ARUL (14 Ny=AuNNTL (19

; where u is the connectivity constant of the lattice,is the
stretch q(—) — e A(IN)? (15)  so-called enhancement exponent, add is a lattice-

N dependent constant. We now focus on the globule domain
corresponding to values=0O(1). It hasbecome well ac-
cepted that the numbe¥(t,At) of globule conformations of
given density(corresponding to values betwed¢nand
At) similarly behaves according to

for a value §=1/(1—wv) which is nothing but the Fisher
exponen{7]. Now in order to obtain a compact form which
embeds the three behaviors and is suitable for the numericgl_i_
analysis, a simple interpolation is used: definify,(t)

through the relationship N(t,At)=A(t,At) u(t) N7~ L, (20)

Pn(r)dr=—Py(t)dt (16)  Here,At is a narrow interval which is fixethdependently of

. . ) ) N. The numbernu(t) is the connectivity constant of SAW'’s
(let us reca_ll that is a decreasing function aof), the inter- with a densityp=t"""1, and A(t,At) is a prefactor still to
polation writes be modeled. The exponent, does not vary witht (in the
whole globule domaip and characterizes the globule in the

— a—[ANt+A’(Nt)~9]
Pn(t)~e ' 17 same way asy does for the coil. Equatiori20) is to be
where compared with the partition function of an interacting self-
avoiding walk given in Ref{9], although we do not include
v—1/d their term[,ul(p)]N” (with o=1-1/d). We have shown in-
1=, (18 deed in a preceding papEgt0] that this term arises from the

energetic contribution of the nearest-neighbor interactions
Let us note that the distributioRy(r,y) of the end-to-end (see also Sec. V By definition, X(t,At)=NyPy(t)At,
distancer ;, although more often encountered in the litera-which leads to
ture, is not suited for our purpose for the reason that this
distancer ;jy does not characterize the conformations of the p _ A(t,AY
chains. For example, loops, which correspond;ig=1 (on N AAt
a lattice, may belong to coil as well as to globule classes. A 4 )
misunderstanding may come from the fact that #verage ~ WhereA(t,At)[AAt]™* does not depend ahit. This proves
value(ry) over subsets of conformations correspondiag ~ that the leadindN dependence oP\(t) is expressed as
spectivelyto globule, coil, or stretch type happens to satisfy P.(1)~ e~ NI 22)
the scaling lawgr ;) ~NY9, (r;\)~N?, and(r;)~N, re- n(~e :
spectively. Ne_vertheless, th_e_ un_derlying distribuﬂilmr_ N) where a mere identification gives
does not provide any classification of the conformations. On
the contrary, as we focus mainly on the coil-globule transi- w(t)
tion which is characterized on the very behavior of the den- e dl="n,
sity, the radius of gyratiom (for each conformationis the
relevant state variable in our problem. Please note that frorgonjecturing a power law fah (t,At)[ AAt] ™%, we come to
now onr will denote the radius of gyration of a given con- the complete expression
formation (random variabl¢ and must not be confused with
the usual mean radius of gyrati®y (the averageover all Pr(t)=AN7s~ 7t NI, (24)

N

& NYg_)’, (21)

(23
M
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TABLE Il. Theoretical valuegfor d=2) or numerical measure- TABLE IIl. Details of the Monte Carlo simulationéslithering
ments (for d=3) of the des Cloizeaux exponenty and of the  snake algorithmn For each sizeN, between two and four histo-
enhancement exponengsn the coil and in the globule phases. The grams(corresponding to different values &f were computed and
last column displays the value efas deduced from Eq27). In collapsed in a global histogram spanning the overall interval of
three dimensions, the value ofis still unknown but the interval is  values. Column 2 gives the sum of the number of stepe simu-

rather narron(5%). lation step corresponding to the move of one mongmeguired for
each histogram. For each paiN k), the number of independent

6o 63 Y Yg c conformations is the ratio of the total number of simulation steps to

" 3 - o 2 the so-called decorrelation time. Column 3 gives the overall number
d=2 24 8 32 16 3 of independent conformations obtained for a giverand all the
d=3 27 <027 11608 -1.09 -1.16<c<=-107  corresponding values of.

No. of steps

where\ is a normalization constarmdependent of Nthis N (X 10P) No. of Ind. Conf.
independence will be used for testing the internal consis
tency of our scaling theor{Secs. IV and IX. Let us finally 20 25 200 735
compute the exponemt Keeping in mind that the distribu- 50 710 205777
tion Py(t) is related to the distributioPy(r) through Eq. 80 710 73 065
(16), and that, according to the very definitiontdfEg. (11)] 100 1220 47617
we havedr/dt=(1/d— »)N""}(Nt) =2~ (*~1 we obtain 150 3210 106 485

Pny(t=1/N)=(v—1d)NT""Py(r=N"). (25

We extend the validity of the expressiofy(t)
It has already been shown in Ré&] thatN"Py(r=N") is ~ =AN'"t%e™ N9 [Eq. (24)] to the coil state by including
independent oN, so that the factore A (N9™% already encountered in E4L7), to ob-
tain the complete expression
Pn(t=1/N)~N. (26)
Pn(t)=AN1FcteeNabg AN, (29)
Comparing with Eq.(24), we finally come to the explicit
relation whereq is given in Eq.(18) andt is defined in Eq(11).
Ctl=y—7. (27) IV. NUMERICAL EVIDENCE OF THE STRUCTURE
OF Py(t)

This relation asserts the universality of which provides
another test of consistency of our scaling predictions. Let us In order to check the theoretical descriptionRy§(t) and
note that this exponent is equivalent for the distribution further model the functiom(t), we performed a numerical
Py(t) to the des Cloizeaux expone#y involved in the dis-  simulation. We first used the “slithering snaké39 algo-
tribution of the end-to-end distandd1]. It is well known  rithm of Wall and Mande[16] on a cubic lattice for chain
that y and 4, are related througl#,=(y—1)/v. Duplantier  lengthsN between 20 and 150 monomégse Table Il for
similarly introduced an exponer in the globule domain, dﬁté_l"S)_- Thri]S_ th assr?ciated with a discrete mOde]!inr? Olf the
; _3: ; : C chain in which each monomer occupies a site of the lattice
?;gtgzvti;stﬁfgst ;]/alu% s in two dimensiong12}; g is and the bond length is fixed, being equal to the lattice pa-
0 9 rameter. In order to lower lattice effects and to bypass the
g nonergodicity of the SS algorithm, we also used the “bond
-1+ ﬁ (28) fluctuation” (BF) algorithm of Carmesin and Krem¢t7].
Yo d’ This a ly off-latti del as the bond length
ppears as a nearly off-lattice model as the bon g
varies froml ;=2 to a valud ., equal to\13 ind=2 and
This leads toyy= 3¢ 22 in the globule domain, whereas in the V10 in d=3. Before discussing with more details the statis-
coil domain [13] y=2%. In three dimensions, the des tical validity and the physical relevance of these two ap-
Cloizeaux exponentﬁo and 69 are not known exactly but proaches, let us present the common procedure used to gen-

) . . o erate the numerical data and the subsequent analysis.
nuln";egcal S|IrE11u;ia'glon$_1411] 1'2%‘;;8%)&2'25 O'Oé' (Azl;;r)ther In both approaches, the excluded volume has been taken
related resu ISy rom £q W€ " into account by imposing that two distinct monomers never

deducec=—%; in two dimensions. We conjecture that the gccupy the same cell, which amounts to imposing a minimal
physical reasons explaining in two dimensions whydistancel ,,,=1 for the SS algorithm anb,;,=2 for the BF
0<63<6, remain valid in three dimensions, so that algorithm between any pair of monomers. The range of val-
—y<c<—7y—6/3; hence—1.16sc<-1.07 in three di- ues of the radius of gyration reached in the former simula-
mensiongsee Table Il for a summary of the discusgiorhe  tions presented in Refg4] and[5] was rather narrow and did
forthcoming analysis of the geometric coil-globule transitionnot provide compact conformations. In order to enlarge this
gives an improved valuec=-1.13t0.01; hence interval and to sample values pfairound the minimum value
¥¢=1.03+0.01 and finallyg§=0.09+0.03 according to Eq. rmin={minNY9, it was necessary to use a bias of selection in
(29). our Monte Carlo simulatior{such a bias is usually called
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TABLE IV. Dimensionless coefficients entering the probability distribution of the radius of gyration in
three dimensions, obtained by the numerical analiiés. IX) of the data coming from the slithering snake
(S9 algorithm and bond fluctuatio(BF).

n c A B A N

SS 2101 -113+0.01 0.021%0.0005 (8.30.2)x10°% 15.0+1 1.95+0.05
BF 21+0.1 -1.13+0.01 0.02%0.001  (4.1:0.2)x10°% 1.5+0.2 (2.0:0.1)x10*

“importance sampling’). Instead of the usual Boltzmann being taken over th&l bonds of the chain and over all the
weight, we introduced in the Metropolis procedure an effec-conformations corresponding to thevalue.
tive Boltzmann factor of the forra“N!, wherex is an adjust- It is sufficient to run the simulation for a few values of
able parameter playing the role of an effective inverse temto cover the entire space of conformations. It is then neces-
perature. Because of the lattice, the variablis discrete.  sary to collapse the data obtained at different valuesiofo
However, the intervalst between two consecutive discrete @ single histogram. We did so in a manner which, although
values is very small, so that we divided the intervaltof reminiscent of that of Ferrenberg and Swend$e8l, is,
values into subintervals of arbitrary fixed lengtt=0.05 _however, substantially different and is completely described
(for which Ats> 8t). The numerical valu®,(t)At accounts in Ref.[19]. o .
for the fraction of conformations that have &alue between In order to check the validity of Equatlo(li9), we draw
t and t+At. Note that in order to take into account the the ratio— (1/N)In[x ~IN~+9t—cp(t)e" ™% as a function
variable bond length in the BF method, we used a rescaledf t for different chain lengths. Note that the numerical value
density of A" was yet known for the SS algorithm from the direct
graphical analysis dPy(r) [5]. For a unique suitable fit of
(1 (p) d andc (see Table 1V, the curves collapse onto a universal
p* = N(—) et* =t[(I)(t)]¥d-D, (300  curveg(t) (see Figs. 1 and)2The fit is very sensitive to the
r value of c. It allows one to give an accurate estimate
c=-1.13+0.01, and shows in particular its position as re-
Here(l)(t) (or equivalently(l)(p) ast andp are relateflis  gards —1. The universality strongly supports the scaling
the average bond length for a given valuetdthe average theory forPy(t) presented in Sec. lIl.

1 T T T T | f T | T T | I
og L - N=150 .
C . N=100 7 ]
oL - N=80 |
= - . N=50 1
o L -
0.4 - —~
0.2 |- .
0 & L1 S IR B

5 10 15

FIG. 1. Log-log plot of the universal functiog(t) as a function ot. The curves obtained from the slithering snake algorithm and for
different chain lengths collapse onto a single one. For small valuésgft) is linear with a slopeA=0.0215+0.0005. The dashed line
accounts for this linear behavior, whereas the plain line displays the second-order approximation give(8in. Expmpare with Fig. 2,
obtained with the bond-fluctuation algorithm.
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FIG. 2. Log-log plot of the universal functiog(t*) as a function ot* for the bond-fluctuation algorithm?* is defined in Eq(30). For
small values ot*, g(t*) is linear with a slopeA=0.025+0.001. Compare with Fig.l) obtained with the slithering snake algorithm.

Let us briefly discuss the respective pitfalls and advan- Further modeling ofy(t) is the purpose of the following
tages of the SS and BF simulations. A major drawback of theections. According to Figs. 1 and g(t) is linear for small
SS algorithm is its nonergodicity. Nevertheless, the largeralues oft, in agreement with the theoretical predictions. A
amount of available resultéfor example from exact enu- direct analysis presented in Figs(f8r the slithering snake
meration) about the statistics of SAW’s on square and cubicsimulation and 4(for the bond fluctuation simulatigrshows
lattices comparing favourably with SS numerical resultsthat the first correction to this linear behavior is a power law:
weakens this criticism. Moreover, we are mainly interested
in the behavior at vanishing, which corresponds to low- g(t) =At+Bt"+h.o (31)
density conformations; as the nonergodicity of the SS algo- U
rithm comes from certain dense conformatidi2], it is
likely that the sampling of the coil conformations is not where h.o. represents higher order terms. Nevertheless, the
flawed. Concerning the sampling of the dense region, we argrocedure is not able to provide a more accurate value for
inclined to think that the nonergodicity uniformly restricts thann=2x0.2 for the SS simulation and=2.2+0.2 for
the sampling, so that the overall statistics is unbiased. Inthe BF simulation. As the two confidence intervals overlap,
deed, let us define as the limiting value of the connectivity we claim that both simulations are consistent with the uni-
constantu(t) for close-packed SAW'’s corresponding to the versal scaling form given in EQqs(29) and (31), with
subsett=t,,,, of the globule regime. Our functiog(t) in- n=2.1+0.1. The more refined numerical analysis presented
volves this coefficientw throughg(t,.0=In(w/w) [see Eq. below for the slithering snake simulatigBec. IX will com-

(23) and Table ], and the good agreement between our valudort this value.
of w and the value computed in R¢R1] supports the rel-
evance of our SS simulation even in the dense region.

As the BF algorithm is ergodic, the compatibility of the
results obtained with BF and SS simulations about the scal-
ing form of Py(t) comforts the claim that the statistics ob-  Let us consider a model of fictitious interactions between
tained by the SS algorithm at vanishihg unaffected by its monomers leading to the following energy of the whole
nonergodicity. The values of the exponenextracted from  chain,
SS and BF data coincidérigs. 1 and 2 As the models
underlying the two simulation differ, this agreement strongly
supports the universal scaling form Bf(t) proposed in Eq.

(29); in particular, it does not depend on the discrete nature
of the modeling, and hence should actually stand for real is a coupling parameter. Note that such interactions are not
chains in the continuum. pairwise additive. This involves a Boltzmann weight

V. GEOMETRIC COIL-GLOBULE TRANSITION.
GEOMETRIC O POINT

U=—NJt (32
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In[g(t)—A t]

FIG. 3. Log-log plot of the differencg(t) — At as a function ot for the slithering snake algorithm. The slope of the curve is equal to
n, and hence shows that the first correction to the linear behavig(tpis of the formBt" with B=(8.3+0.1)x10™ 4 andn=2.0. Compare
with Fig. (4), obtained with the bond-fluctuation algorithm.
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t*

FIG. 4. Log-log plot of the differencg(t) — At as a function ot for the bond-fluctuation algorithm. The exponenin the correction
Bt" takes a valuem=2.2; hereB=4.1x10 %
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eN'=e P! with y=pBJ and B=1k_T as usual. For this is the normalization. For given values Kfand y, the distri-

model we can define the partial partition function of a SAWbution P{(t) varies witht as
at a fixed value ot,
Pg\lx)(t)wtce—A/(Nt)fqe— N[(A—x)t+ Btn]. (40)
Zn(x:t) =R\Py() e, (33
According to the sign oA— x, the dominant contribution to

or, equivalently, the distribution P{(t) is located in different domains of values iof

P (t)eXNt For y<A (high temperaturgsthe distribution is strongly
p(Nx>(t): _ N N (34 peaked around a value ofof order O(1/N). This corre-
JoPn(t)eX™dt sponds to values af of orderO(N”), and leads us to iden-

tify this high-temperature regime with @il phase
For x>A (low temperaturgs P{(t) exhibits two peaks,
respectively localized aroundt;~1/N and t,=[(x

at anyy. At this stage this model is meretiesigned to probe
the structure and the scaling propertiesRf(t). However,
we showed in Ref{10] that the mean energy of an interact- _
ing self-avoiding walk(ISAW) of radius of gyrationr is —A)/nB] e l.)' These two .peaks are Wellis(?ggrated, and
equal to— JMy(r) whered is a coupling constant and where their respei“"e contributions  areS,~N and
the mean number of contadiéy(r) behaves according to ~ S;~€V""PB%; hence the dominant contribution comes
from the vicinity oft,. This corresponds to values ofof
ro| M- r | (v (y=1) orderO(N*®), and leads us to identify this low-temperature
W) _C(W regime with aglobule phaseHence varying the temperature
induces a phase transition whose critical poihts given

ro\vasy through the relationshiy=A, namely,
-D| & (39
N
B J
Hence the mean number of contacts per monomer reads o= kB_A (4D
c L
my(t) =a+bt— (N 7= & (N) ™, (36) VI. SCALING PROPERTIES OF THE GEOMETRIC

COIL-GLOBULE TRANSITION
where o0=1—1/d accounts for the surface correction term
exponen{9], andq is given in Eq.(18). In the globule phase
and for large chains, Eq36) reduces to

The distribution of order parameters was studied carefully
by Binder [22] within a general framework; he showed a
general scaling behavidfinite-size scaling analysisn the
vicinity of phase transitions according to their order. In the
same spirit, we shall now describe the finite-size scaling of

It thus appears that the previous formal motlet —NJt _PF\IX)(t)_ around the transition temperatufi and moreover
coincides with a mean-field approximation of the ISAw investigate how the thermodynamic limit is reached in our
model. specific situation.

We now show that varying the temperatdfeinduces a It will appear convenient to introduce the rescaled vari-
geometrictricritical phase transition between a coil state and@P!€s
a globule state. As justified by the above discussion, this
transition is nevertheless strongly related to ¢lxperimental
coil-globule transition, which is generally assumed to be de- A -1
scribed by the ISAW model. Moreover, we claim that this =N 7 (43)
formal transition should be the geometric basis underlyin
any real coil-globule transition.

It is clear from Eq.(11) that in the thermodynamic limit,
t vanishes in the coil state but remains finite in the globule = ﬂ: ﬂ
state, and thus appears as a possible order parameter of the T A
coil-globule transition. Henceforth we will focus on the dis- ) ) ] )
tribution P{(t) defined in Eq(34). Taken into account Egs. 'NSerting Eqs(42) and (43) into Eq. (38) finally gives
(29) and (31), we shall use the following expression:

t=Nnt, (42

%herer is the reduced temperature difference

(44)

N<1+c)(1—1/n)fce—[A‘ri+Bin]e—A’N*q(lflfn)E*q

ANt PR (t)dt= | dt.
38 N(X)

, (38 (45)

— n A’ -q
Nl+ctce N(At+Bt )e A"(Nt) e

PRI(t) =

InCx)

where We introduce the notations

(x) —p (>=Hd}
e JtmaxkNHCtCe_N(AHBtn>e_A,(Nt),qethdt PR (t)dt=Py (7D, (46)
0

(39) h(st)=tce [AT+BI" 47)
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) “ A AL _arN—OQ(l-1n)i—q
O P N INIT £ BtV s At RPN A h(r,t)e AN qLme
|a(T,N)—f teh(7,h)e AN todt. (48) A~ _n(Atoa-1n AT
0 PN(Tvt) N CO(A/) ’ (54)
This leads to the relation where the factoe AN "t can pe ignoredwe remind

the reader that in the scaling domatnand 7 remain finite

A AL arN—a(l-1n)— I . . .
~ . h(rhe AN e whenN— ), so thatPy(7,t) reduces in the scaling domain
Pn(7,t)= = (49
lo(7,N) to
D (L% (1+c)(1—1/n) h(AT'f)
A. Distribution of probability in the scaling domain Pn(7t)=N m (55)
0

and its thermodynamic limit

We now investigate the thermodynamic limN{ ) of ~ As before, care must be taken when computing the normal-
the distributionPy(7,1) in the domain wheré and7 remain  ization 1o(7,N) of Py(7,t); actually, it must be performed
finite, which will appear to be the scaling domainand7  on the overall expressid(29) in order to handle correctly the
will actually appear to be the scaling variables of the transiintegration in the vicinity oft=0. This explains the remain-
tion). Nevertheless, due to the value@fwhich happens to ing power ofN in Eq. (55), which does not exist in Binder’'s
bec< — 1, the limiting behavioe~ AN MYt q cannot  €Xpressior{22], however identical in any other respect.

be cast directly in expressio@8) of 15(7,N); in fact, the .
nonintegrability of the remaining integrand ts=0 forbids B. Thermodynamic limit of the moments of Py (7,t)

us in that case to invert the limit and the integration. Let Us  \ye now come to the computation of the various moments

stress that the valug® =—1 appears as a threshold for the of the rescaled order parameierLet « be an arbitrary real
behavior with respect tdl (at fixed 7). We first rewrite Eq. number; intending to give an explicit expression for
(48) for =0 into
P S 1 ,(7,N)
(RN =N [ g e (=], UPurbdt=y oy O
0

we have to distinguish two cases according to the position of
a+c with respect to— 1.

(i) a+c>—1:in this case we use expressi@#8). Due
to the integrability of the partial integrarid* e +Bt" ||
ith tt@ ind dently of over the integration domain and because the factor
with respect t@ independently o N—a(l—1n)— .
P P y e AN qe=imy <1 on that domain, we are allowed to take

N. Thisis i diate si . .
'S 1 Immediate since the thermodynamic limit inside the integral. This leads to

_N—(A=1n)ps, Ny~ (N=1)pNn
X e N A’rZe N Bz dz (50)

by a mere change of variabte= N ~Y"t. For a fixed value

of 7, the first step is to bound from above the factor
e N~ ATz N~ ("D

o= N—(1—1/n)A;ze,N—(n—l)BZn

Lo(T,N)~Jo(7), (57)
— o [ATt+BIN where
1 if 7=0 Ay | Fretap— (art+BIN 4
s[e(n—l)B(—A”T/nez)”/m1) it <0 (51) Ja(T)_JO e dt. (58)
Now because< — 1, the partial integrand®e A’ ® in Eq.  Hence
(50) is integrable. Thanks to the Lebesgue theorem, it is then 305
legitimate to take the thermodynamic limit inside the integral (t9)y(r)=NEFroa-1n " (59)
appearing in Eq(50), which leads to Co(A")
w L We note that this amounts to making direct use of &§) in
IO(E-,N)wN‘(“C)(l‘””)f e A7 4z the computation of the moments. It is possible to give a
0 closed form ofl,(7) in the limit whereT> 1,
— ’ —(1+c)(1-1/n) ~ ~
Co(ADN ' %2 3 (7)~(A%)~@ e I (a4 c+1). (60)

Explicit calculation of this integral is possible, leading to In the case?<0 and|3>1, the standard steepest-descent

method allows us to approximate

2 1/2
n(n—l)B)

, 1
Co(A ):ar

—(1+c)

: (A/)(1+C)/q_ (53)

Jo(7)=

_A’,;_ (ct+a)/(n—1)
nB )

We note that this leading order only dependsAdnbut not ) -
on 7 or N in the scaling domain. Hendey(7.,t) writes X g(N=LB(-ATNB)M (61)
g N
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(i) a+c<—1: in this case, we have to start from the
equivalent expression

I a(},N) — N7(1+C+a)(lfl/n)

o
N (1=1h)An —(h—-1)BZ" _ s —q
Xf ZC+a'e N A7z+N e A'z dz
0

(62

The procedure already used in the computation 46f,N)
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s Jal7)
< >_ ‘]0(’7\')' (67)
where
39(7)= f:fCe*A**BWdi (69)

is now well defined since> —1. In the caser=1, this leads

[Eqg. (50)] can be extended straightforwardly to the presentO

situation, leading for a fixed value af (hence inside the
scaling domaihto

Ia(’%’N):N—(1+C+a)(1—1/n)Ca(A/), (63)
where
* - 1 |—(1+c+
Ca(A')~f zteg A7 Ygz= —I‘[M
0 q q
X(A/)(l+c)/q (64)

no longer depends om. This finally leads to the desired
result

—(1+c+a)(1-1/n) ’ ’
N-(+e "ColA) - at- 1 CalA)

Co(A")’
(65)

to) (1) = — - -
< >(T) N-(TFod 1’”)CO(A)

or, equivalently, for the initial order parameter

Cu(A")

(=N

(66)

Let us notice that in this case wheeet c<—1, the trun-

cated expression of the probability distribution given in Eq.

(55) does not suffice to obtain the value of the moments.

VII. DISCUSSION OF THE TRICRITICAL NATURE
OF THE GEOMETRIC COIL-GLOBULE TRANSITION
AND CALCULATION OF THE CRITICAL EXPONENTS

It was shown in Sec. V thdtis a suitable order parameter
for the coil-globule transition. Actually, any positive power

t* of t would be equally convenient, insofar as in the ther-

modynamic limit,t* would be equal to zero in the coil state

’,}_—1

|5 Un=1)

R if 7>0 -
(O~ if 3<0. (69)
In order to interpret this scaling law in the language of poly-
mer physics, we introduce the quantity
RE = NYd(t)~(v= 1), (70)
which is the most relevant definition of the radius of gyration
in terms of the order parametét). The usual definition
(denoted Rg in Sec. ) would involve the mean value
(t 20— U2 of 5 negative power of which has not the
behavior of an order parameter. From E@®) and(70), we
obtain

. NVozy—1/d if 7>0
R€=Nvg<t> (v l/d)~[Ny9|'7‘_|—[1/(n—1)](v—1/d) if ’7‘.<0,
(71

where
—1+l ! 72
vo=gTn ) 72

We verify thatv, satisfies the hyperscaling relations

and strictly positive in the globule state. In order to convince

the reader of the importance of the positioncafiith respect
to the threshold value* 1, we first present the rather
straightforward scaling picture that occurs tor — 1, before
examining the relevant situatian< —1.

A. Standard tricritical scaling behavior when c>—1

Let us suppose here that- — 1 and leta be some strictly
positive real number. As stated above, the mondéfit ap-

1
L_vowg 1 1) d " 2
et g A mimplvmg)lt g
where the crossover exponegitis equal to
¢=1—1n. (74
This hyperscaling relation means that
L. NV if 7>0
Re~ N1 if 7<0. 79

It thus clearly appears th& satisfies a standafd] tricriti-
cal scaling lawR%~N"#f(N?7), so that the rescaled vari-
able 7=N?r is precisely one of the scaling variable of the

pears to be a macroscopic order parameter characterizing th@nsition. We stress that the exponents appearing in this

phase(coil or globulg in the thermodynamic limit; its res-

scaling law do not depend on the value of provided

caled form(t*) behaves with respect to the rescaled controlc>—1; hence in particular they remain valid in the case

parameterr in the vicinity of the phase transitionr&0) as
[see Eq(58)]

where no factort® is present in the distributio®y(t) (i.e.,
c=0).
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B. Anomalous tricritical scaling behavior with
for the observed situationc<—1
We now turn to the observed case< —1. Due to the — 1 1 1
divergence irt=0 of the factort® discussed at length in Sec. e (1+o)| 1 n) (V d (78
VI, the mean valu€t) now writes according to Eq59),
R and
(Hy=N1+o-1m ‘]1(7? ’ (76)
Co(A") ( 3,05 )(Vl/d)
H(7)~ ' 79
so thatR% now writes ( Co(A") (79
RE=N"H(7), (77 In view of Egs.(60) and (61),
N%}(2+c)(v—1/d) i >0
RE~{ — . _ _ _ o B ASnR(N=1) e A (80)
S| N7o|3| LA+ n-1)](— Ud) g (= Ld)(n—1)B(~ATInB) if <0,
|
where it is implicitly assumed thak|> 1. The exponent, A. Numerical evaluation of | ,(7,N)

still satisfies the expected hyperscaling law We now intend to compute,(7,N) for any finite value of

o N, especially for the small valudd<200 relevant for our
1\ v—v, simulations. It appears essential to distinguish two cases ac-
Ve a) - (81) cording to the sign of-.

(i) Wheneverr>0, the integrand involved in the defini-
tion of 1 ,(7,N) [Eq. (48)] exhibits a lonely peak and is uni-
formly bounded with respect td (in both casestr+c>—1
and a+c<—1); this allows us not only to take the thermo-
dynamic limit inside the integral but also to estimate the rate
—_— of convergence in the limit ad—oc0. The explicit computa-

tion depends on the sign ef+c+1; nevertheless, in both
) casesx+c>—1 anda+ c< — 1, providedr> 0, the integral
I.(7,N) converges toward its thermodynamic limit fast

whereas the right-hand member of this equation should bghough to identify the numerical regime with the asymptotic

—[1+c/(n—1)](»— 1/d) according to the expressionBf, ~ °M€: . _
in the casé< 0 [Eq. (80)]. This anomalous hyperscaling law __ (i) We now turn to the case<0. It appears convenient
stems from the unusual exponential behavior appearing off SPIit the integrand into twojac;g)rs. For sufficiently large
the globule side of this transition. It must be stressed that ivalues of| 7|, the first onee™ ™81 s peaked around the
the case< — 1, the factort® controls the value of the critical value

exponents. Moreover, a strong discontinuity arises in the be-

havior of R§ when crossing the threshold valo&= —1 (in fo=<
the globule regimer<0). Let us finally remark that this

threshold valuec* = — 1 is robust, since it would be simi-

larly obtained when taking any positive povtérinstead ot~ and its height does not depend Nin In the casex+c<—1,

for the order parameter; more precisely, expressing the disye denotel ,(7) the contribution of this peak to the integral

(2+¢)

on the coil side of the transitionr&0) but not on the glob-
ule side < 0). On this globule side,

1

1 1
l+c— m)(l/— a), (82

— A5\ Un-1)
) : (83

nB

tribution in variablez=t* would lead to a factor®*** /'« | (% N)_ Inthe caser+c>—1, itis possible to identify this
where the new exponent,=(c+1+ a)/a satisfiesc,<—1  contribution with the convergent integra(7) given in Eq.
if and only if c<—1. (59). In both cases, the contribution remains finite and stan-

dard steepest-descent method applifes |7| sufficiently

VIIl. NUMERICAL REALITY VERSUS large, leading to the explicit estimation

THERMODYNAMIC LIMIT

_ _ o ifate>—1, Ju(7) 27\ A7\ (et
In order to link the above thermodynamic analysis andif 3 ; ]% n(n—1)B ( 0B )

numerical data, we shall now investigate the manner and the

rate at which the thermodynamic limit is reached. This rate x e(N=1B(~A7nB)"M "D (84)

will appear to be so slow that, for some quantities, we shall '

have to distinguish two regimes, referred to(@k) for the U

thermodynamic limit andNUM) for the finite-size regime.  The second factor in the integrandtfs “e~ ;
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it is peaked around=0 and gives a contributio ,(N)
independent ofr varying with N according to

o

Ka(N):f
0
— Nf(l+c+a)(1fl/n)ca(A/)_

~ _arN—a(l-1M)i—q A
tC+ae A'N t dt

(89)
For |7|>1, the two peaks are well separated, so that

Jo(M+KYN) if a+c>—1

T.(H4KN) if atc<—1. (89

|a(’7\',N):[

Focusing onl o(7,N), we now want to evaluate the relative
contributions of the two peaks that contribute to its inte-
grand. As this integrand is, up to some normalization con
stant, equal tdy(7,t), the analysis will rely on the estima-
tion of the different contributions iPy(7,t), whose relative
importance is shown in Fig. 5 for various value\ofFigure

6 presents the level curves of the rag(N)/Jy(7) in the

(7—N) space, leading us to discriminate the domain of va-

lidity of TL from the regime where NUM presented just
above holds. In conclusioi ,(N) is negligible with respect
to, respectively)) (7) or J,(7) in the numerical regimésee
Table V for a comparative summary of all the resulfhis
leads to the following estimation, valid whateveris (pro-
vided 7<0):

) 1/2(

« @(N=1)B(~A7/nB)M("~1

~A%
nB

21

lo(7.N)~ n(n—1)B

) (c+a)/(n—1)

87

It is now clear that in this case+c<<— 1, and especially for
a=0, the thermodynamic limit of ,(7,N) will never be
reached in numerical simulations.

B. Numerical evaluation of the distribution f’N(},f)
and of its moments

We first evaluate the leading behavior of the distribution

I5N(3-,f) given in Eq.(49) when restricting to the numerical
regime. In that regime, we have seen thg(tr,N)~Jy(7),
so that

TABLE V. Quantitative comparison of the thermodynamic and numerical regimes intending to summarize the analysis presented in Secs.

VI, VII, and VIII (for 7<0). Heret,=(—A7/nB)"~! [see Eq(83)].
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A Al —q(1-1n);—q
h(r,t)e A'N t

Py(TD) TE (89)
0

For |7| sufficiently large we may now write explicitly the
expression of the various moments on the basis of &f3.

and(87)
ol

valid whatevera is. All the discussion of both the thermo-
dynamic and the numerical regiméer 7<0) is summarized
in a comparative way in Table V.

al(n—1)
_ 7)

Jun) (-7
nB

(= (89)

C. Effective numerical exponents

We finally come to the expression of the numerically ob-
servable scaling laws. For>0, the thermodynamic limit
given in Sec. VII[Eq. (80)] is relevant for the numerical
analysis, namely,

R~IGc~ Nv_g’q‘_(2+ c)(v— 1/d)‘ (90)
Conversely, forr<0, taken into account Eq89) for a=1,
we obtain

R~ NYe| 7|~ (U= [v= (1)} (91)
in the same way as for the case- — 1 [Eq. (72)]. We thus
may summarize the ftricritical scaling behavior observed in
the numerical regiméhat is, for chains of lengthd < 107).

|

This behavior is anomalous in the sense that there are now
two different exponents, and v,. Note that, accordingly,
there are two different hyperscaling relations holding, re-
spectively, forv, andv,

. N o520l (1d)] if >0
Ra NV,,|AT|—[1/(n—1)][V—(1/d)] if 5<0. (92

1
(2+C) V—a)z d’ s
1
1 1\ d V¢
Al a5 9

TL

atc<—1 atc>—1 NUM
|5(},N) N(TFerad-1me (A7) ~’f(()c+a)e(n—l)BAtg ~f((]c+a)e(n71)|3]8
() N—a(l—l/n)ca(A’) N(@+O)(-1/n) 14(7) ~t5

Co(A) Co(A)
lo(7,N) NEFOA=Imc (A") Nf(c)e(n—l)slg
Pn(T.D) NFOA-1np(7 1) (see Fig. 5 h(7,0)
Co(A) 1o()(7)
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FIG. 5. Analytic plot of the normalized distributid%,\,(},f) according to Eq(54) showing the relative contributions of the two peaks of
the integrand of Eq(48) (for «=0) for increasing values dfl and for7= —5, which justifies the computation of the thermodynamic limit
of the normalization factofy(y)=AN®* @M=/ (7 N). [Note that the areas under the three curves are equal because of the huge
peak of Py(7,1) in the vicinity of t=0]
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FIG. 6. 7—N diagram showing the domains of validity of the analysis presented in Sec. VIII. Three level curves corresponding
respectively to the values 0.1, 1, and 10 of the r&jgN)/Jo(7) are drawn. Above the curve of level 10, the thermodynamic limit regime
(TL) is reached and Eq¢52) and(55) are valid. The domain below the curve of level 0.1, which is nearly entirely embedded in the domain
reachable numericalljnamelyN<10°) is described by equations given in the column NUM of Table V.
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The crossover expone is identical in both hyperscaling (see Fig. 7. Note that this procedure for obtainiry does
relations, equal tep=1—1/n. not require any previous knowledge of the other parameters
(A’, \, B, andc).
(iii ) A third fruitful property of Q is that it gives a direct
access to the value af As a matter of factQ is a decreas-
IX. ANALYSIS OF THE NUMERICAL DATA |ng function Of)(, then is maximal inXZO, which corre-

sponds tor— < and makes it possible to use E§0), which
All the above analysis provides the theoretical frameworkieads to

for validating the proposed structure of the distribution

Pn(t), and for estim_ating the numerical vglues _of its param- (4+c¢)(3+c)
eters. In order to circumvent the numerical difficulties in- Qmax=(2+—c)2, (99
duced by the anomalous factt; we propose the following
alternative to the well-known Binder’s reduced fourth cumu- . .
lant [which we recall to beJ, =3— ((t*)/(t2)?)] whose remarkable feature is to depend exclusively @md
L to be quickly decreasing arourdf = —1. In consequence,
(t4)(t)2 this controls in a very efficient way the numerical estimation
Qexd X:N)= RNTGUR (94)  of the value ofc. Figure 7 clearly shows that< —1, in fact
{t that c<—1.07 which is compatible with the theoretical in-

terval obtained using Ed27) and with the numerical value
“previously obtained in Sec. IV.

(iv) A last interest of this quantit@(7) is that its slope at
the transition point gives access Bothrough the following
(95) expression:

which is directly accessible from our numerical data. Ac
cording to Eq.(56), this quantity theoretically reads

0N = L(7,N)I%(7,N)

153(7,N)
4+c 3+c
(i) The great advantage in introducing this new quantity is Q'(7=0) r I — )
to get rid ofl4(7,N) which does not behave similarly in the =~ -—pin| g3 -2
thermodynamic and numerical regimes. Indeed, in view of Q(7=0) T 3+c F(2+C)
the results presented in Table V, the first remarkable property n n
of Q is that it reduces in the numerical domdimhich we
recall to be the domain relevant for the interpretation of the ﬂ
numerical datato n
.o 5+c\ |’ (100
~ Ja(7)J1(7) n_
NUM —
QM= 53 (96)
As displayed in Figure 8, the curv€®\“M(7) collapse onto
Let us stress tha®"“M no longer depends dN, nor onA’, a universal one fon=2.1+0.1. This value is consistent with
nor onAa. the value ofn given by Eq.(98). We also note in Fig. 8 that

(i) Moreover, at the transition point, namely, whes 0, Qexp{x=*)~1 (corresponding ta= — =) as expected. The
the quantities] (7=0) (¢=1,2,4) involved inQ""™ are  whole set of numerical values of the parameter®gft) is
equal to given in Table IV.

Focusing on the transition point€0), we draw in Figs.

- 1 [fatc+l 9, 10 and 11, respectively, the numerical curves
JQ(T:O):EF - Bf(a+c+l)/n’ (97) p y
. taPN(t)eANteA'(Nt)_q
so that t— NGO a=0,1,2 (101
+ 2+c)]? .
r E) e for different values ofN. For each value otvr=0, 1, or 2,
Q,=QNM(7=0)= n s (98) the curves collapse as expected on the universal one
F(3+C t—t*h(7=01)=t**ce B" which concludes the validation
n of our theoretical predictions and comforts the numerical

values given in Table IV.
Figure 9(for a=0) clearly evidences the divergence due

Coming back to the bare variabjg instead ofr which de-  to the factort®. Figure 10(for &= 1) still exhibiting a diver-
pends on our knowledge @f and ofn, we draw in Fig. 7 the gence int=0 supports once more tha& — 1. Figure 11(for
curvesQep{ X;N), representing as a function ofy for dif- a=2) highlights the domain where the value Bfis sensi-
ferent values of\. Due to the fact tha@Q, does not depend tive.

on N [Eq. (99)], all these curves are theoretically meant to  Finally, we may now give improved values fep, v, and
Cross in a unigue point, appearing to be the transition point using the best values af andc given in Table IV and
x=A, which is accurately verified on the numerical curvesy=0.588:
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FIG. 7. Generalized cumula,, defined in Eq(94), as a function ofy. The three curves corresponding to valuefef50, 100, 150
intersect in a single poiriy= x4, Q=Q,) with x,=A. This gives access to the numerical valuedaf 0.0215+ 0.0005.Qy, is given in Eq.
(98). Forc=—1.07, Qmax=6.54 according to E(99). Note that the observed value Qf,,(x=0) for N=150 is very close and obviously
provides a lower bound faQ,,,,. For the best value=—1.13, Q,,»,=7.09, which corresponds to the upper dashed line.
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FIG. 8. Same as Fig. 7, but using the rescaled varialite n=2. The three curves obtained fid=50, 100, and 150 now collapse. The
dashed line accounts for the sloperat0 and for the asymptotic values Qf: Qexp{x=2)=1 (7= — ) and Qexp{(x=0)=7.09 (= + ).
The inset displays a sketch @f(7) in the thermodynamic limit.
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FIG. 9. Numerical analysis corresponding to Ep01) with =0 for three different chain lengti$=50, 100, and 150. The plain line
is the theoretical prediction.

v,=0.455+0.006, X. CONCLUSION

In this paper we have presented a phenomenological ap-

vy=0.472-0.008, (102 proach to the statistics of a self-avoiding walk, relying on a
numerical simulation. We showed a relevant order parameter
¢=0.48+0.02. t on which a geometric coil-globule transition is perceived
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FIG. 10. Same as Fig. 9 but far=1 in Eq. (10J).
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FIG. 11. Same as Fig. 9, but far=2 in Eq. (10D.

when adding a formal Boltzmann factor; let us recall that thisnamic limit, which imposes an effective regiméhe so-
factor intends to weight differently the corresponding sub-called “numerical regime” relying on finite-size scalip@
spaces of conformatior(soil or globule when the tempera- order to interpret the numerical data corred®g].

ture is varied. Such an intrinsic transition allows us to give a All the difficulties encountered in the numerical analysis
precise meaning to the coil and the globule phases. We hawtem from the anomalous valge — 1; we expect that these
identified and modeled the different contributions exhibitedproblems might remain in more physical situations. In order
by our numerical results, which allowed us to reconstruct theéo circumvent such problems, the numerical analysis could
distribution Py(t) of the order parametdr We have exhib- take advantage of the extended cumul@ntintroduced in
ited an unexpected contributidgh to Py(t), and we related Sec. IX. We also suggest th& introduced in Sec. VII
the associated exponeatto the well-known enhancement might be an interesting alternative quantity more convenient
exponents in the coil and the globule phases. We showed thian the usual radius of gyratid® recalled in Sec. I.

scaling variablesr andt of the transition, and derived the ~ We claim that the various contributions appearing in the
corresponding scaling laws. It has been proven that a threskitructure of Py (t) provide the geometric basis underlying
old valuec* = — 1 separates two qualitatively different scal- physical coil-globule transitions, in the sense where it de-
ing behaviors, namely, a standard tricritical behavior forscribes the influence of both the topology of the chain and
c>c* and an anomalous scaling forxc* in the thermody- the self-avoiding constraints. The way of implementing the
namic limit; the latter case<<—1 is the observed situation. geometric description in a real situation, through a factoriza-
An additional consequence of this valoet—1 is the dra- tion procedure, has been tackled in a preceding pgl&r
matically slow rate of convergence toward the thermody-and will be soon extensively exposed by the authors.

[1] P. G. de Gennes, J. Phy&rance Lett. 36, L-55 (1975; 39, [7] M. E. Fisher, J. Chem. Phyd4, 616 (1966.
L-299 (1978. [8] P. G. de Gennesscaling Concepts in Polymer Physi@Sor-
[2] See for example, C. Vanderzande, A. L. Stella, and F. Seno, nell University Press, Ithaca, NY, 1979
Phys. Rev. Lett67, 2757(1991); B. Duplantier and H. Saleur, [9] A. L. Owczarek, T. Prellberg, and R. Brak, Phys. Rev. Lett.

ibid. 61, 1521(1988; 62, 1368(1989. 70, 951(1993.
[3] B. Duplantier and H. Saleur, Phys. Rev. L&8, 539(1987). [10] J. M. Victor, J-B. Imbert, and D. Lhuillier, J. Chem. Phy€0,
[4] J. M. Victor and D. Lhuillier, J. Chem. Phy82, 1362(1990. 5372(1994.

[5] M. Bishop and C. J. Saltiel, J. Chem. Phg8, 6594(1988. [11] J. Des Cloizeaux, J. Phy&arig 41, 223(1980.
[6] Daniel Lhuillier, J. Phys(France 49, 705 (1988; J. Phys. [12] B. Duplantier, J. Phys. A9, L1009 (1986.
(France Il 2, 1411(1992. [13] B. Duplantier, Phys. Rev. B5, 5290(1987.



56 DISTRIBUTION OF THE ORDER PARAMETER OF TH. ..

[14] M. Wittkop, S. Kreitmeier, and D. Gz, J. Chem. Physl04,
351 (1996.

[15] P. Grassberger, J. Phys. 26, 2769(1993.

[16] F. T. Wall and F. Mandel, J. Chem. Phy&3, 4592 (1975;
F. Mandel,ibid. 70, 3984 (1979.

[17] J. Carmesin and K. Kremer, Macromoleculzk 399 (1988
H. P. Deutsch and K. Binder, J. Chem. Ph94, 2294(1991).

[18] A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. LGidt.
2635(1988.

5647

[19] J.-B. Imbert and J. M. Victor, Mol. Simull6, 399 (1996.

[20] N. Madras and A. D. Sokal, J. Stat. Phyi§, 573(1987).

[21] H. Orland, C. ltzykson, and C. de Dominicis, J. Ph§iEgance
Lett. 46, 353(1985.

[22] K. Binder, J. Comput. Phy£9, L-55 (1985.

[23] K. Binder, Phys. Rev. Leté47, 693(1981); K. Binder and D.
P. Landau, Phys. Rev. B0, 1477(1984.



