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Distribution of the order parameter of the coil-globule transition

J. B. Imbert, A. Lesne, and J. M. Victor
Laboratoire de Physique The´orique des Liquides, Universite´ Pierre et Marie Curie, Case courrier 121, 4 Place Jussieu,

75252 Paris Cedex 05, France
~Received 7 October 1996; revised manuscript received 18 June 1997!

We investigate the probability distributionPN(r ) of the radius of gyrationr of a polymer chain of sizeN
with excluded-volume interactions at infinite temperature. This function shows the geometric contribution to
the tricritical coil-globule transition of self-avoiding walks; it indicates that the relevant order parametert of
the transition is a power of the densityr5Nr2d. The theoretical form of the distributionPN(t) of this order
parameter is deduced from scaling arguments, and supported by numerical simulations. Intending to probe the
contribution of the different subsets of conformations, namely, globule, coil and stretch, we supplementPN(t)
with a formal Boltzmann factor; this model undergoes a tricritical coil-globule transition which is solved
exactly. We show a nontrivial finite-size scaling forPN(t) and analyze its convergence toward the thermody-
namic limit. Due to the presence inPN(t) of a diverging factortc with c,21, this convergence happens to be
tragically slow. As a result, the scaling behavior observed in numerical simulations is qualitatively different
from its thermodynamic limit, and we relate the critical exponents of the geometric transition in the thermo-
dynamic limit and the effective exponents observed at finite size.@S1063-651X~97!12010-4#

PACS number~s!: 36.20.Ey, 64.60.Kw, 75.40.Mg
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I. INTRODUCTION

Since the pioneering work of de Gennes@1#, much of the
literature has been devoted to the status of the coil-glob
transition. Even though its tricritical nature soon beca
commonly accepted, achieving a complete scaling the
motivated many controversial papers@2# and is still an open
problem. All the exponents were theoretically calculated
two dimensions for one specific model@3#, but it has not
been possible to solve more realistic cases, even the sim
ones.

The present paper raises the following question: wh
properties of the coil-globule transition come from the ge
metric structure of the chain~i.e., the linear ordering of the
monomers along the chain and the excluded-volume effe!
and which ones come from specific interactions betw
monomers~typically van der Waals and Coulomb!? We
bring about some answers by studying the statistics of
radius of gyration, using a phenomenological approach s
ported by a numerical simulation. This analysis indeed p
vides universal insights about the different classes of con
mations ~namely globule, coil, and stretch! and on the
transitions between them.

Restricting to a lattice description, geometric propert
are mimicked using the well-known self-avoiding wa
model ~hereafter denoted the SAW model, as usual!. It is
worth noticing that the simple SAW description coincid
with the infinite temperature limit of any realistic model in
cluding interactions between monomers and solvent. In
sense, geometric properties are universal insofar as they
behind any realistic model but do not depend on the ass
ated interactions. The relevant order parameter for descri
the coil-globule transition is generally taken to b
c̄5ANRG

2d, whereRG is the usual radius of gyration de
fined as the root-mean-square over all the conformation
the random quantity r 5N21A(1< i , j <Nuur i2r j uu2 for a
561063-651X/97/56~5!/5630~18!/$10.00
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chain of N monomers. In order to obtain more statistic
information about the conformations, here we investigate
distribution of the random variablec5ANr2d; the usual
quantity c̄ is nothing but the first moment of this distribu
tion. The simple relation between the random variablesc
andr allows us to focus onPN(r ) without losing any infor-
mation. HerePN(r )dr denotes the probability that a SAW o
size N has a radius of gyration betweenr and r 1dr; it
completely describes the geometric properties of SAWs
is universal for linear polymers.

Victor and Lhuillier @4# already investigated the form o
PN(r ) in the domain where the radius of gyration scales
r;Nn ~n being the usual Flory exponent!. They proposed a
scaling law forPN(r ) in two dimensions which agrees wit
their numerical simulation data. This work was soon rep
duced in three dimensions by Bishop and Saltiel@5#, but still
in this rather narrow interval of values ofr . Please note tha
we henceforth denote; the identity of the leading orders u
to some multiplicative constants where, unless explic
mentioned, the asymptotic ordering is associated with
limit N→`.

The radius of gyration describes the nature of the con
mations of the chain. It increases from its minimum val
r min5zminN

1/d to its maximum valuer max5zmaxN ~see Table I
for the value ofzmin in three dimensions!. The conformations
are commonly divided into three classes, namely globu
coil, and stretch, according to their own radius of gyrationr :

globule coil stretch

r;N1/d r;Nn r;N

Because the polymer changes continuously from a glob
into a coil and from a coil into a stretch, the limits betwe
these classes are rather fuzzy. More precisely, a clear
distinction between the three regimes is relevantonly in the
thermodynamic limit (N→`) but clearlynot at finite sizeN.
We suggest that the distributionPN(r ) allows one to define
5630 © 1997 The American Physical Society



en
u-
te

th
i-

e
ion

n
e

e

tio

l
b
-
e
b

av

re
n
t

-
n
a

io

e
lo

-
lac-

to
tions
cces-
-

o-
y.

ct

am
d

56 5631DISTRIBUTION OF THE ORDER PARAMETER OF THE . . .
three phases and associated transitions. The issue is th
properly carry out the thermodynamic limit of the distrib
tion in order to bring out the phase transitions and charac
ize their nature in the usual thermodynamic sense.

In Sec. II, we recall scaling arguments which indicate
relevant form ofPN(r ) and lead us to introduce a new var
ablet; we believe its first moment̂t& to be the most suitable
order parameter for the coil-globule transition. In Sec. III, w
give the complete theoretical structure of the distribut
PN(t) of the state variablet. Section IV is devoted to a
numerical justification of the structure ofPN(t), and to the
measure of a new geometric exponentn appearing in it;
moreover, we show a novel factortc contributing toPN(t).
In Sec. V, we prove by introducing a fictitious~however
strongly related with more realistic models! Boltzmann fac-
tor that the structure ofPN(t) induces an intrinsic coil-
globule transition which we claim to be the geometric fou
dation of real coil-globule transitions. In Sec. VI, w
examine the scaling properties ofPN(t) and of its moments;
we also compute their thermodynamic limit. In Sec. VII w
deduce the critical exponentsnu andf for this transition; we
discuss the nature of the transition according to the posi
of the exponentc with respect to a threshold valuec* 521.
The observed valuec,21 leads to an anomalous tricritica
scaling behavior. Section VIII is devoted to finite-size pro
lems. Due to the valuec,21, it is shown that the thermo
dynamic limit is reached so slowly that it cannot be d
scribed by numerical data and cannot predict observa
results ~except for unrealistic chain lengths ofN;1020

monomers!. These data bring out an effective scaling beh
ior characterized by two different values of the exponentnu ,
in contrast to the thermodynamic scaling behavior. The p
vious discussion provides the framework for a correct a
exhaustive analysis of our numerical data, which is presen
in Sec. IX.

II. SCALING HYPOTHESIS IN THE THREE PHASES

The scaling laws for the distributionPN(r ) have already
been introduced in preceding papers@6# on the basis of phe
nomenological arguments; here we give further justificatio
based on the differing statistical scale invariances inside e
of the three classes of conformations, which in addit
physically comfort their different status.

~a! The globule phase is dominated byspatially homoge-
neousconformations. This means that the local averag
density does not depend on the position inside a given g
ule and hence coincides with its global densityr5Nr2d. As

TABLE I. Numerical values of the connectivity constantsm and
v of a self-avoiding walk on a cubic lattice for coil and compa
globular conformations, respectively.tmax denotes the maximum
value of t, and g(tmax) is given in Fig. 1. The value ofm comes
from exact enumeration@8# andv5(2d/e) according to Ref.@21#.
Here we used the slithering snake algorithm as it involves the s
lattice model~a monomer occupies one site and the length bon
equal to 1!.

zmin tmax g(tmax) m v ln(m/v)

0.4805 15.63 0.77060.015 4.683 2.21 0.751
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a result, the probabilityPN(r ) scales~up to some normaliza-
tion constants! as

globule PN~r !dr;@p~Nr2d!#Nd~Nr2d!5@p~r!#Ndr.
~1!

This assertion involves only the leading behavior of theN
dependence ofPN(r ) in the thermodynamic limitN→`, as
will be discussed below.

~b! In the stretch phase, the length parameterl 5di j /u j 2 i u
is defined as the ratio of the distancedi j between two mono-
mers i and j to their distanceu j 2 i u along the chain; the
relevant scale invariance here is thetranslational invariance
along the chain. As a result, the parameterl is constant, and
hence equal tol 5r 1N /N, wherer 1N is the so-called end-to
end distance. The same reasoning is still valid when rep
ing the partial distancedi j by the partial radius of gyration
r i j . This invariance is supplemented by the fact that, due
the absence of excluded-volume effects between subsec
of the stretch, the chain can here be considered as a su
sion of independent parts, which leads to the following scal
ing behavior:

stretch PN~r !dr;@q~r /N!#Nd~r /N!. ~2!

~c! Conversely, the coil phase is dominated byfractal
conformations~in a statistically defined meaning! of fractal
dimension 1/n. HencePN(r ) exhibits the following scaling
behavior:

coil PN~r !dr;P~rN2n!d~rN2n!. ~3!

Because the three kinds of behavior~globule, stretch and
coil! appear as three limiting cases of auniqueunderlying
distribution, some strong matching conditions first intr
duced in Ref.@6# must be satisfied. Let us recall them briefl
Writing the distributionp(r) as

p~r!5e2G~r!, ~4!

and the distributionP(rN2n) as

P~rN2n!5e2 f ~rN2n!, ~5!

and assuming that the functionG is a power lawG(r);ra

at vanishing density, Eqs.~1!, ~3!, ~4! and ~5! lead to

e2NG~Nr2d!;e2 f ~rN2n! ~6!

~still identifying the leading order of theN dependences!.
This leads to

f ~rN2n!;N~Nr2d!a;~rN2n!2da, ~7!

from which it follows that

a5
1

nd21
. ~8!

Hence, we may rewrite Eqs.~1! and ~3! as follows:

globule pS N

r dD;e2A~N/r d!1/~nd21!
, ~9!

e
is
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coil PS r

NnD;e2A~r /Nn!21/~n21/d!
, ~10!

whereA is a model-dependent constant. The new state v
able

t5r1/~nd21! ~11!

arises in a natural way, and we finally come to

globule pS N

r dD;e2At, ~12!

coil PS r

NnD;e2NAt. ~13!

Such a procedure may be carried out between the coil
the stretch behaviors as well leading to

coil PS r

NnD;e2A8~r /Nn!d
, ~14!

stretch qS r

ND;e2A8~r /N!d
~15!

for a value d51/(12n) which is nothing but the Fishe
exponent@7#. Now in order to obtain a compact form whic
embeds the three behaviors and is suitable for the nume
analysis, a simple interpolation is used: definingPN(t)
through the relationship

PN~r !dr52PN~ t !dt ~16!

~let us recall thatt is a decreasing function ofr !, the inter-
polation writes

PN~ t !;e2@ANt1A8~Nt!2q#, ~17!

where

q5
n21/d

12n
. ~18!

Let us note that the distributionPN(r 1N) of the end-to-end
distancer 1N , although more often encountered in the liter
ture, is not suited for our purpose for the reason that
distancer 1N does not characterize the conformations of
chains. For example, loops, which correspond tor 1N51 ~on
a lattice!, may belong to coil as well as to globule classes
misunderstanding may come from the fact that theaverage
value^r 1N& over subsets of conformations correspondingre-
spectively, to globule, coil, or stretch type happens to satis
the scaling lawŝ r 1N&;N1/d, ^r 1N&;Nn, and^r 1N&;N, re-
spectively. Nevertheless, the underlying distributionPN(r 1N)
does not provide any classification of the conformations.
the contrary, as we focus mainly on the coil-globule tran
tion which is characterized on the very behavior of the d
sity, the radius of gyrationr ~for each conformation! is the
relevant state variable in our problem. Please note that f
now on r will denote the radius of gyration of a given con
formation~random variable! and must not be confused wit
the usual mean radius of gyrationRG ~the averageover all
ri-
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the conformations!. In view of Eq. ~17!, we shall rather use
the state variablet given in Eq.~11!.

III. COMPLETE STRUCTURE
OF THE DISTRIBUTION PN„t…

Equation ~17! arose from matching conditions betwee
scaling arguments based on the homogeneous nature o
globule and stretch conformations on one hand, and on
fractal nature of the coil conformations on the other hand
order to highlight all the relevant contributions involved
the thermodynamic behavior, we now design a theoret
expression forPN(t) which remains valid outside the match
ing domain and thus generalizes Eq.~6!. The extra contribu-
tions with respect to Eq.~17! will contain the exponents o
the geometric transition claimed above and give access to
scaling landscape of the whole space of conformations.

It is well known@8# that the total number:N of SAW’s of
lengthN is given by

:N5LmNNg21, ~19!

wherem is the connectivity constant of the lattice,g is the
so-called enhancement exponent, andL is a lattice-
dependent constant. We now focus on the globule dom
corresponding to valuest5O(1). It has become well ac-
cepted that the number:(t,Dt) of globule conformations of
a given density~corresponding to values betweent and
t1Dt! similarly behaves according to

:~ t,Dt !5L~ t,Dt !m~ t !NNgg21. ~20!

Here,Dt is a narrow interval which is fixedindependently of
N. The numberm(t) is the connectivity constant of SAW’s
with a densityr5tnd21, andL(t,Dt) is a prefactor still to
be modeled. The exponentgg does not vary witht ~in the
whole globule domain!, and characterizes the globule in th
same way asg does for the coil. Equation~20! is to be
compared with the partition function of an interacting se
avoiding walk given in Ref.@9#, although we do not include
their term@m1(r)#Ns

~with s5121/d!. We have shown in-
deed in a preceding paper@10# that this term arises from the
energetic contribution of the nearest-neighbor interacti
~see also Sec. V!. By definition, :(t,Dt)5:NPN(t)Dt,
which leads to

PN~ t !5
L~ t,Dt !

LDt Fm~ t !

m GN

Ngg2g, ~21!

whereL(t,Dt)@LDt#21 does not depend onDt. This proves
that the leadingN dependence ofPN(t) is expressed as

PN~ t !;e2Ng~ t !, ~22!

where a mere identification gives

e2g~ t !5
m~ t !

m
. ~23!

Conjecturing a power law forL(t,Dt)@LDt#21, we come to
the complete expression

PN~ t !5lNgg2gtce2Ng~ t !, ~24!
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56 5633DISTRIBUTION OF THE ORDER PARAMETER OF THE . . .
wherel is a normalization constantindependent of N; this
independence will be used for testing the internal con
tency of our scaling theory~Secs. IV and IX!. Let us finally
compute the exponentc. Keeping in mind that the distribu
tion PN(t) is related to the distributionPN(r ) through Eq.
~16!, and that, according to the very definition oft @Eq. ~11!#
we havedr/dt5(1/d2n)Nn11(Nt)212(n21/d), we obtain

PN~ t51/N!5~n21/d!N11nPN~r 5Nn!. ~25!

It has already been shown in Ref.@4# that NnPN(r 5Nn) is
independent ofN, so that

PN~ t51/N!;N. ~26!

Comparing with Eq.~24!, we finally come to the explicit
relation

c115gg2g. ~27!

This relation asserts the universality ofc, which provides
another test of consistency of our scaling predictions. Le
note that this exponentc is equivalent for the distribution
PN(t) to the des Cloizeaux exponentu0 involved in the dis-
tribution of the end-to-end distance@11#. It is well known
that g andu0 are related throughu05(g21)/n. Duplantier
similarly introduced an exponentu0

g in the globule domain,

and gave its exact valueu0
g5 3

8 in two dimensions@12#; gg is
related tou0

g through

gg511
u0

g

d
. ~28!

This leads togg5 19
16 in the globule domain, whereas in th

coil domain @13# g5 43
32. In three dimensions, the de

Cloizeaux exponentsu0 and u0
g are not known exactly bu

numerical simulations@14# lead tou050.2760.01. Another
related result@15# is g51.160860.0003. From Eq.~27! we

deducec52 37
32 in two dimensions. We conjecture that th

physical reasons explaining in two dimensions w
0,u0

g,u0 remain valid in three dimensions, so th
2g,c,2g2u0/3; hence21.16<c<21.07 in three di-
mensions~see Table II for a summary of the discussion!. The
forthcoming analysis of the geometric coil-globule transiti
gives an improved value c521.1360.01; hence
gg51.0360.01 and finallyu0

g50.0960.03 according to Eq
~28!.

TABLE II. Theoretical values~for d52! or numerical measure
ments ~for d53! of the des Cloizeaux exponentsu0 and of the
enhancement exponentsg in the coil and in the globule phases. Th
last column displays the value ofc as deduced from Eq.~27!. In
three dimensions, the value ofc is still unknown but the interval is
rather narrow~5%!.

u0 u0
g g gg c

d52 11
24

3
8

43
32

19
16 2

37
32

d53 27 ,0.27 1.1608 21.09 21.16<c<21.07
-

s

We extend the validity of the expressionPN(t)
5lN11ctce2Ng(t) @Eq. ~24!# to the coil state by including
the factore2A8(Nt)2q

already encountered in Eq.~17!, to ob-
tain the complete expression

PN~ t !5lN11ctce2Ng~ t !e2A8~Nt!2q
, ~29!

whereq is given in Eq.~18! and t is defined in Eq.~11!.

IV. NUMERICAL EVIDENCE OF THE STRUCTURE
OF PN„t…

In order to check the theoretical description ofPN(t) and
further model the functiong(t), we performed a numerica
simulation. We first used the ‘‘slithering snake’’~SS! algo-
rithm of Wall and Mandel@16# on a cubic lattice for chain
lengthsN between 20 and 150 monomers~see Table III for
details!. This is associated with a discrete modeling of t
chain in which each monomer occupies a site of the lat
and the bond length is fixed, being equal to the lattice
rameter. In order to lower lattice effects and to bypass
nonergodicity of the SS algorithm, we also used the ‘‘bo
fluctuation’’ ~BF! algorithm of Carmesin and Kremer@17#.
This appears as a nearly off-lattice model as the bond len
varies froml min52 to a valuel max equal toA13 in d52 and
A10 in d53. Before discussing with more details the stat
tical validity and the physical relevance of these two a
proaches, let us present the common procedure used to
erate the numerical data and the subsequent analysis.

In both approaches, the excluded volume has been ta
into account by imposing that two distinct monomers ne
occupy the same cell, which amounts to imposing a minim
distancel min51 for the SS algorithm andl min52 for the BF
algorithm between any pair of monomers. The range of v
ues of the radius of gyration reached in the former simu
tions presented in Refs.@4# and@5# was rather narrow and did
not provide compact conformations. In order to enlarge t
interval and to sample values ofr around the minimum value
r min5zminN

1/d, it was necessary to use a bias of selection
our Monte Carlo simulation~such a bias is usually calle

TABLE III. Details of the Monte Carlo simulations~slithering
snake algorithm!. For each sizeN, between two and four histo
grams~corresponding to different values ofk! were computed and
collapsed in a global histogram spanning the overall interval ot
values. Column 2 gives the sum of the number of steps~one simu-
lation step corresponding to the move of one monomer! required for
each histogram. For each pair (N,k), the number of independen
conformations is the ratio of the total number of simulation steps
the so-called decorrelation time. Column 3 gives the overall num
of independent conformations obtained for a givenN and all the
corresponding values ofk.

N
No. of steps

(3106) No. of Ind. Conf.

20 25 200 735
50 710 205 777
80 710 73 065

100 1220 47 617
150 3210 106 485
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TABLE IV. Dimensionless coefficients entering the probability distribution of the radius of gyratio
three dimensions, obtained by the numerical analysis~Sec. IX! of the data coming from the slithering snak
~SS! algorithm and bond fluctuation~BF!.

n c A B A8 l

SS 2.160.1 21.1360.01 0.021560.0005 (8.360.2)31024 15.061 1.9560.05
BF 2.160.1 21.1360.01 0.02560.001 (4.160.2)31024 1.560.2 (2.060.1)31024
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‘‘importance sampling’’!. Instead of the usual Boltzman
weight, we introduced in the Metropolis procedure an eff
tive Boltzmann factor of the formekNt, wherek is an adjust-
able parameter playing the role of an effective inverse te
perature. Because of the lattice, the variablet is discrete.
However, the intervaldt between two consecutive discre
values is very small, so that we divided the interval ot
values into subintervals of arbitrary fixed lengthDt50.05
~for which Dt@dt!. The numerical valuePN(t)Dt accounts
for the fraction of conformations that have at value between
t and t1Dt. Note that in order to take into account th
variable bond length in the BF method, we used a resca
density

r* 5NS ^ l &~r!

r D d

⇔t* 5t@^ l &~ t !#d/~nd21!. ~30!

Here^ l &(t) ~or equivalentlŷ l &(r) as t andr are related! is
the average bond length for a given value oft ~the average
-

-

d

being taken over theN bonds of the chain and over all th
conformations corresponding to thet value!.

It is sufficient to run the simulation for a few values ofk
to cover the entire space of conformations. It is then nec
sary to collapse the data obtained at different values ofk into
a single histogram. We did so in a manner which, althou
reminiscent of that of Ferrenberg and Swendsen@18#, is,
however, substantially different and is completely describ
in Ref. @19#.

In order to check the validity of Equation~29!, we draw
the ratio2(1/N)ln@l21N2(11c)t2cPN(t)eA8(Nt)2q

# as a function
of t for different chain lengths. Note that the numerical val
of A8 was yet known for the SS algorithm from the dire
graphical analysis ofPN(r ) @5#. For a unique suitable fit ofl
and c ~see Table IV!, the curves collapse onto a univers
curveg(t) ~see Figs. 1 and 2!. The fit is very sensitive to the
value of c. It allows one to give an accurate estima
c521.1360.01, and shows in particular its position as r
gards 21. The universality strongly supports the scalin
theory forPN(t) presented in Sec. III.
for
FIG. 1. Log-log plot of the universal functiong(t) as a function oft. The curves obtained from the slithering snake algorithm and
different chain lengths collapse onto a single one. For small values oft, g(t) is linear with a slopeA50.021560.0005. The dashed line
accounts for this linear behavior, whereas the plain line displays the second-order approximation given in Eq.~31!. Compare with Fig. 2,
obtained with the bond-fluctuation algorithm.
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FIG. 2. Log-log plot of the universal functiong(t* ) as a function oft* for the bond-fluctuation algorithm.t* is defined in Eq.~30!. For
small values oft* , g(t* ) is linear with a slopeA50.02560.001. Compare with Fig.~1! obtained with the slithering snake algorithm.
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Let us briefly discuss the respective pitfalls and adv
tages of the SS and BF simulations. A major drawback of
SS algorithm is its nonergodicity. Nevertheless, the la
amount of available results~for example from exact enu
meration! about the statistics of SAW’s on square and cu
lattices comparing favourably with SS numerical resu
weakens this criticism. Moreover, we are mainly interes
in the behavior at vanishingt, which corresponds to low
density conformations; as the nonergodicity of the SS al
rithm comes from certain dense conformations@20#, it is
likely that the sampling of the coil conformations is n
flawed. Concerning the sampling of the dense region, we
inclined to think that the nonergodicity uniformly restric
the sampling, so that the overall statistics is unbiased.
deed, let us definev as the limiting value of the connectivit
constantm(t) for close-packed SAW’s corresponding to th
subsett5tmax of the globule regime. Our functiong(t) in-
volves this coefficientv throughg(tmax)5ln(m/v) @see Eq.
~23! and Table I#, and the good agreement between our va
of v and the value computed in Ref.@21# supports the rel-
evance of our SS simulation even in the dense region.

As the BF algorithm is ergodic, the compatibility of th
results obtained with BF and SS simulations about the s
ing form of PN(t) comforts the claim that the statistics o
tained by the SS algorithm at vanishingt is unaffected by its
nonergodicity. The values of the exponentc extracted from
SS and BF data coincide~Figs. 1 and 2!. As the models
underlying the two simulation differ, this agreement strong
supports the universal scaling form ofPN(t) proposed in Eq.
~29!; in particular, it does not depend on the discrete nat
of the modeling, and hence should actually stand for r
chains in the continuum.
-
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Further modeling ofg(t) is the purpose of the following
sections. According to Figs. 1 and 2,g(t) is linear for small
values oft, in agreement with the theoretical predictions.
direct analysis presented in Figs. 3~for the slithering snake
simulation! and 4~for the bond fluctuation simulation! shows
that the first correction to this linear behavior is a power la

g~ t !5At1Btn1h.o., ~31!

where h.o. represents higher order terms. Nevertheless
procedure is not able to provide a more accurate value fon
than n5260.2 for the SS simulation andn52.260.2 for
the BF simulation. As the two confidence intervals overla
we claim that both simulations are consistent with the u
versal scaling form given in Eqs.~29! and ~31!, with
n52.160.1. The more refined numerical analysis presen
below for the slithering snake simulation~Sec. IX! will com-
fort this value.

V. GEOMETRIC COIL-GLOBULE TRANSITION.
GEOMETRIC Q POINT

Let us consider a model of fictitious interactions betwe
monomers leading to the following energy of the who
chain,

U52NJt. ~32!

J is a coupling parameter. Note that such interactions are
pairwise additive. This involves a Boltzmann weig
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FIG. 3. Log-log plot of the differenceg(t)2At as a function oft for the slithering snake algorithm. The slope of the curve is equa
n, and hence shows that the first correction to the linear behavior ofg(t) is of the formBtn with B5(8.360.1)31024 andn52.0. Compare
with Fig. ~4!, obtained with the bond-fluctuation algorithm.

FIG. 4. Log-log plot of the differenceg(t)2At as a function oft for the bond-fluctuation algorithm. The exponentn in the correction
Btn takes a valuen52.2; hereB54.131024.
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exNt5e2bU with x5bJ and b51/k
B
T as usual. For this

model we can define the partial partition function of a SA
at a fixed value oft,

ZN~x,t !5:NPN~ t !exNt, ~33!

or, equivalently, the distribution

PN
~x!~ t !5

PN~ t !exNt

*0
`PN~ t !exNtdt

~34!

at anyx. At this stage this model is merelydesigned to probe
the structure and the scaling properties ofPN(t). However,
we showed in Ref.@10# that the mean energy of an interac
ing self-avoiding walk~ISAW! of radius of gyrationr is
equal to2JMN(r ) whereJ is a coupling constant and wher
the mean number of contactsMN(r ) behaves according to

MN~r !5aN1bS r

NnD 21/~n21/d!

2CS r

NnD ~121/d!/~n21/d!

2DS r

NnD 1/~12n!

. ~35!

Hence the mean number of contacts per monomer reads

mN~ t !5a1bt2
C

N
~Nt!2s2

D

N
~Nt!2q, ~36!

where s5121/d accounts for the surface correction ter
exponent@9#, andq is given in Eq.~18!. In the globule phase
and for large chains, Eq.~36! reduces to

mN~ t !5a1bt. ~37!

It thus appears that the previous formal modelU52NJt
coincides with a mean-field approximation of the ISA
model.

We now show that varying the temperatureT induces a
geometrictricritical phase transition between a coil state a
a globule state. As justified by the above discussion,
transition is nevertheless strongly related to theexperimental
coil-globule transition, which is generally assumed to be
scribed by the ISAW model. Moreover, we claim that th
formal transition should be the geometric basis underly
any real coil-globule transition.

It is clear from Eq.~11! that in the thermodynamic limit
t vanishes in the coil state but remains finite in the glob
state, and thus appears as a possible order parameter o
coil-globule transition. Henceforth we will focus on the di
tribution PN

(x)(t) defined in Eq.~34!. Taken into account Eqs
~29! and ~31!, we shall use the following expression:

PN
~x!~ t !5

lN11ctce2N~At1Btn!e2A8~Nt!2q
exNt

I N~x!
, ~38!

where

I N~x!5E
0

tmax
lN11ctce2N~At1Btn!e2A8~Nt!2q

exNtdt

~39!
is

-

g

e
the

is the normalization. For given values ofN andx, the distri-
bution PN

(x)(t) varies witht as

PN
~x!~ t !;tce2A8~Nt!2q

e2N@~A2x!t1Btn#. ~40!

According to the sign ofA2x, the dominant contribution to
PN

(x)(t) is located in different domains of values oft.
For x,A ~high temperatures!, the distribution is strongly

peaked around a value oft of order O(1/N). This corre-
sponds to values ofr of orderO(Nn), and leads us to iden
tify this high-temperature regime with acoil phase.

For x.A ~low temperatures!, PN
(x)(t) exhibits two peaks,

respectively localized aroundt1;1/N and t25@(x
2A)/nB] 1/(n21). These two peaks are well separated, a
their respective contributions areS1;N2(11c) and

S2;eN(n21)Bt2
n
; hence the dominant contribution come

from the vicinity of t2 . This corresponds to values ofr of
orderO(N1/d), and leads us to identify this low-temperatu
regime with aglobule phase. Hence varying the temperatur
induces a phase transition whose critical pointu is given
through the relationshipx5A, namely,

u5
J

k
B
A

. ~41!

VI. SCALING PROPERTIES OF THE GEOMETRIC
COIL-GLOBULE TRANSITION

The distribution of order parameters was studied carefu
by Binder @22# within a general framework; he showed
general scaling behavior~finite-size scaling analysis! in the
vicinity of phase transitions according to their order. In t
same spirit, we shall now describe the finite-size scaling
PN

(x)(t) around the transition temperatureu, and moreover
investigate how the thermodynamic limit is reached in o
specific situation.

It will appear convenient to introduce the rescaled va
ables

t̂5N1/nt, ~42!

t̂5N121/nt, ~43!

wheret is the reduced temperature difference

t5
T2u

T
5

A2x

A
. ~44!

Inserting Eqs.~42! and ~43! into Eq. ~38! finally gives

PN
~x!~ t !dt5

lN~11c!~121/n! t̂ ce2@At̂ t̂1Bt̂n#e2A8N2q~121/n! t̂2q

I N~x!
dt̂.

~45!

We introduce the notations

PN
~x!~ t !dt5 P̂N~ t̂, t̂ !dt̂, ~46!

h~ t̂, t̂ !5 t̂ ce2@At̂ t̂1Bt̂n#, ~47!
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I a~ t̂,N!5E
0

`

t̂ah~ t̂, t̂ !e2A8N2q~121/n! t̂2q
dt̂. ~48!

This leads to the relation

P̂N~ t̂, t̂ !5
h~ t̂, t̂ !e2A8N2q~121/n! t̂2q

I 0~ t̂,N!
. ~49!

A. Distribution of probability in the scaling domain
and its thermodynamic limit

We now investigate the thermodynamic limit (N→`) of
the distributionP̂N( t̂, t̂) in the domain wheret̂ and t̂ remain
finite, which will appear to be the scaling domain~t̂ and t̂
will actually appear to be the scaling variables of the tran
tion!. Nevertheless, due to the value ofc, which happens to

bec,21, the limiting behaviore2A8N2q(121/n) t̂2q→1 cannot
be cast directly in expression~48! of I 0( t̂,N); in fact, the
nonintegrability of the remaining integrand int̂50 forbids
us in that case to invert the limit and the integration. Let
stress that the valuec* 521 appears as a threshold for th
behavior with respect toN ~at fixed t̂!. We first rewrite Eq.
~48! for a50 into

I 0~ t̂,N!5N2~11c!~121/n!E
0

`

zce2A8z2q

3e2N2~121/n!At̂ze2N2~n21!Bzn
dz ~50!

by a mere change of variablez5N(121/n) t̂. For a fixed value
of t̂, the first step is to bound from above the fact

e2N2(121/n)At̂ze2N2(n21)Bzn
with respect toz independently o

N. This is immediate since

e2N2~121/n!At̂ze2N2~n21!Bzn

5e2@At̂ t̂1Bt̂n#

<H 1

e~n21!B~2At̂/nB!n/~n21!
if t̂>0
if t̂,0. ~51!

Now becausec,21, the partial integrandzce2A8z2q
in Eq.

~50! is integrable. Thanks to the Lebesgue theorem, it is t
legitimate to take the thermodynamic limit inside the integ
appearing in Eq.~50!, which leads to

I 0~ t̂,N!'N2~11c!~121/n!E
0

`

zce2A8z2q
dz

5C0~A8!N2~11c!~121/n!. ~52!

Explicit calculation of this integral is possible, leading to

C0~A8!5
1

q
GF2~11c!

q G~A8!~11c!/q. ~53!

We note that this leading order only depends onA8 but not
on t̂ or N in the scaling domain. HenceP̂N( t̂, t̂) writes
i-

s

r

n
l

P̂N~ t̂, t̂ !5N~11c!~121/n!
h~ t̂, t̂ !e2A8N2q~121/n! t̂2q

C0~A8!
, ~54!

where the factore2A8N2q(121/n) t̂2q
can be ignored~we remind

the reader that in the scaling domain,t̂ and t̂ remain finite
whenN→`!, so thatP̂N( t̂, t̂) reduces in the scaling domai
to

P̂N~ t̂, t̂ !5N~11c!~121/n!
h~ t̂, t̂ !

C0~A8!
. ~55!

As before, care must be taken when computing the norm
ization I 0( t̂,N) of P̂N( t̂, t̂); actually, it must be performed
on the overall expression~29! in order to handle correctly the
integration in the vicinity oft̂50. This explains the remain
ing power ofN in Eq. ~55!, which does not exist in Binder’s
expression@22#, however identical in any other respect.

B. Thermodynamic limit of the moments of P̂N„ t̂, t̂…

We now come to the computation of the various mome
of the rescaled order parametert̂. Let a be an arbitrary real
number; intending to give an explicit expression for

^ t̂a&~ t̂ !5E
0

`

t̂aP̂N~ t̂, t̂ !dt̂5
I a~ t̂,N!

I 0~ t̂,N!
, ~56!

we have to distinguish two cases according to the position
a1c with respect to21.

~i! a1c.21: in this case we use expression~48!. Due

to the integrability of the partial integrandt̂ c1aeAt̂ t̂1Bt̂n all
over the integration domain and because the fac

e2A8N2q(121/n) t̂2q
<1 on that domain, we are allowed to tak

the thermodynamic limit inside the integral. This leads to

I a~ t̂,N!;Ja~ t̂ !, ~57!

where

Ja~ t̂ !5E
0

`

t̂ c1ae2~At̂ t̂1Bt̂n!dt̂. ~58!

Hence

^ t̂a&~ t̂ !5N~11c!~121/n!
Ja~ t̂ !

C0~A8!
. ~59!

We note that this amounts to making direct use of Eq.~55! in
the computation of the moments. It is possible to give
closed form ofJa( t̂) in the limit wheret̂@1,

Ja~ t̂ !'~At̂ !2~a1c11!G~a1c11!. ~60!

In the caset̂,0 and u t̂u@1, the standard steepest-desce
method allows us to approximate

Ja~ t̂ !'S 2p

n~n21!BD 1/2S 2At̂

nB D ~c1a!/~n21!

3e~n21!B~2At̂/nB!n/~n21!
. ~61!



e

en

d

q
.

r
er
er
te
c

r

g
-
tro

ly-

on

-
e
this

se

56 5639DISTRIBUTION OF THE ORDER PARAMETER OF THE . . .
~ii ! a1c,21: in this case, we have to start from th
equivalent expression

I a~ t̂,N!5N2~11c1a!~121/n!

3E
0

`

zc1ae2N2~121/n!At̂z1N2~n21!Bzn

e2A8z2q
dz.

~62!

The procedure already used in the computation ofI 0( t̂,N)
@Eq. ~50!# can be extended straightforwardly to the pres
situation, leading for a fixed value oft̂ ~hence inside the
scaling domain! to

I a~ t̂,N!5N2~11c1a!~121/n!Ca~A8!, ~63!

where

Ca~A8!'E
0

`

zc1ae2A8z2q
dz5

1

q
GF2~11c1a!

q G
3~A8!~11c!/q ~64!

no longer depends ont̂. This finally leads to the desire
result

^ t̂a&~ t̂ !5
N2~11c1a!~121/n!Ca~A8!

N2~11c!~121/n!C0~A8!
5N2a~121/n!

Ca~A8!

C0~A8!
,

~65!

or, equivalently, for the initial order parametert,

^ta&~ t̂ !5N2a
Ca~A8!

C0~A8!
. ~66!

Let us notice that in this case wherea1c,21, the trun-
cated expression of the probability distribution given in E
~55! does not suffice to obtain the value of the moments

VII. DISCUSSION OF THE TRICRITICAL NATURE
OF THE GEOMETRIC COIL-GLOBULE TRANSITION

AND CALCULATION OF THE CRITICAL EXPONENTS

It was shown in Sec. V thatt is a suitable order paramete
for the coil-globule transition. Actually, any positive pow
ta of t would be equally convenient, insofar as in the th
modynamic limit,ta would be equal to zero in the coil sta
and strictly positive in the globule state. In order to convin
the reader of the importance of the position ofc with respect
to the threshold valuec* 521, we first present the rathe
straightforward scaling picture that occurs forc.21, before
examining the relevant situationc,21.

A. Standard tricritical scaling behavior when c>21

Let us suppose here thatc.21 and leta be some strictly
positive real number. As stated above, the moment^ta& ap-
pears to be a macroscopic order parameter characterizin
phase~coil or globule! in the thermodynamic limit; its res
caled form^ t̂a& behaves with respect to the rescaled con
parametert̂ in the vicinity of the phase transition (t̂50) as
@see Eq.~58!#
t

.

-

e

the

l

^ t̂a&5
Ja~ t̂ !

J0~ t̂ !
, ~67!

where

J0~ t̂ !5E
0

`

t̂ ce2~At̂ t̂1Bt̂n!dt̂ ~68!

is now well defined sincec.21. In the casea51, this leads
to

^ t̂&; H t̂21

u t̂u1/~n21!

if t̂.0
if t̂,0. ~69!

In order to interpret this scaling law in the language of po
mer physics, we introduce the quantity

RG* 5N1/d^t&2~n21/d!, ~70!

which is the most relevant definition of the radius of gyrati
in terms of the order parameter^t&. The usual definition
~denoted RG in Sec. I! would involve the mean value
^t22(n21/d)&1/2 of a negative power oft which has not the
behavior of an order parameter. From Eqs.~69! and~70!, we
obtain

RG* 5Nnu^ t̂&2~n21/d!; H Nnut̂n21/d

Nnuu t̂u2 @1/~n21!# ~n21/d!

if t̂.0
if t̂,0,

~71!

where

nu5
1

d
1

1

n S n2
1

dD . ~72!

We verify thatnu satisfies the hyperscaling relations

n2
1

d
5

n2nu

f
and 2

1

n21 S n2
1

dD5

1

d
2nu

f
~73!

where the crossover exponentf is equal to

f5121/n. ~74!

This hyperscaling relation means that

RG* ; HNn

N1/d
if t̂.0
if t̂,0. ~75!

It thus clearly appears thatRG* satisfies a standard@1# tricriti-
cal scaling lawRG* ;Nnu f (Nft), so that the rescaled vari
able t̂5Nft is precisely one of the scaling variable of th
transition. We stress that the exponents appearing in
scaling law do not depend on the value ofc, provided
c.21; hence in particular they remain valid in the ca
where no factortc is present in the distributionPN(t) ~i.e.,
c50!.
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B. Anomalous tricritical scaling behavior
for the observed situationc<21

We now turn to the observed casec,21. Due to the
divergence int50 of the factortc discussed at length in Sec
VI, the mean valuê t̂& now writes according to Eq.~59!,

^ t̂&5N~11c!~121/n!
J1~ t̂ !

C0~A8!
, ~76!

so thatRG* now writes

RG* 5N n̄ uH~ t̂ !, ~77!
b

w

t
l
b

-

d

n
t

at
a

with

n̄u5
1

d
1F1

n
2~11c!S 12

1

nD G S n2
1

dD ~78!

and

H~ t̂ !;S J1~ t̂ !

C0~A8! D
2~n21/d!

. ~79!

In view of Eqs.~60! and ~61!,
RG* ;H N n̄ ut̂ ~21c!~n21/d!

N n̄ uu t̂u2@~11c!~n21!#~n21/d!e2~n21/d!~n21!B~2At̂/nB!n/~n21!

if t̂.0
if t̂,0, ~80!
ac-

-
-

-
ate

st
tic

t
e

l

an-
where it is implicitly assumed thatu t̂u@1. The exponentn̄u
still satisfies the expected hyperscaling law

~21c!S n2
1

dD5
n2 n̄u

f
~81!

on the coil side of the transition (t̂.0) but not on the glob-
ule side (t̂,0). On this globule side,

1

d
2 n̄u

f
5S 11c2

1

n21D S n2
1

dD , ~82!

whereas the right-hand member of this equation should
2@11c/(n21)#(n21/d) according to the expression ofRG*
in the caset̂,0 @Eq. ~80!#. This anomalous hyperscaling la
stems from the unusual exponential behavior appearing
the globule side of this transition. It must be stressed tha
the casec,21, the factortc controls the value of the critica
exponents. Moreover, a strong discontinuity arises in the
havior ofRG* when crossing the threshold valuec* 521 ~in
the globule regimet̂,0!. Let us finally remark that this
threshold valuec* 521 is robust, since it would be simi
larly obtained when taking any positive powerta instead oft
for the order parameter; more precisely, expressing the
tribution in variablez5ta would lead to a factorz(c111a)/a,
where the new exponentca5(c111a)/a satisfiesca,21
if and only if c,21.

VIII. NUMERICAL REALITY VERSUS
THERMODYNAMIC LIMIT

In order to link the above thermodynamic analysis a
numerical data, we shall now investigate the manner and
rate at which the thermodynamic limit is reached. This r
will appear to be so slow that, for some quantities, we sh
have to distinguish two regimes, referred to as~TL! for the
thermodynamic limit and~NUM! for the finite-size regime.
e

on
in

e-

is-

d
he
e
ll

A. Numerical evaluation of I a„ t̂,N…

We now intend to computeI a( t̂,N) for any finite value of
N, especially for the small valuesN,200 relevant for our
simulations. It appears essential to distinguish two cases
cording to the sign oft̂.

~i! Whenevert̂.0, the integrand involved in the defini
tion of I a( t̂,N) @Eq. ~48!# exhibits a lonely peak and is uni
formly bounded with respect toN ~in both casesa1c.21
anda1c,21); this allows us not only to take the thermo
dynamic limit inside the integral but also to estimate the r
of convergence in the limit asN→`. The explicit computa-
tion depends on the sign ofa1c11; nevertheless, in both
casesa1c.21 anda1c,21, providedt̂.0, the integral
I a( t̂,N) converges toward its thermodynamic limit fa
enough to identify the numerical regime with the asympto
one.

~ii ! We now turn to the caset̂,0. It appears convenien
to split the integrand into two factors. For sufficiently larg

values ofu t̂u, the first onee2(At̂ t̂1Bt̂n) is peaked around the
value

t̂05S 2At̂

nB D 1/~n21!

, ~83!

and its height does not depend onN. In the casea1c,21,
we denoteJ̃a( t̂) the contribution of this peak to the integra
I a( t̂,N). In the casea1c.21, it is possible to identify this
contribution with the convergent integralJa( t̂) given in Eq.
~58!. In both cases, the contribution remains finite and st
dard steepest-descent method applies~for u t̂u sufficiently
large!, leading to the explicit estimation

if a1c.21,
if a1c,21,

Ja~ t̂ !

J̃a~ t̂ !J 'S 2p

n~n21!BD 1/2S 2At̂

nB D ~c1a!/~n21!

3e~n21!B~2At̂/nB!n/~n21!
. ~84!

The second factor in the integrand ist̂ c1ae2A8N2q(121/n) t̂2q
;
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it is peaked aroundt̂50 and gives a contributionKa(N)
independent oft̂ varying with N according to

Ka~N!5E
0

`

t̂ c1ae2A8N2q~121/n! t̂2q
dt̂

5N2~11c1a!~121/n!Ca~A8!. ~85!

For u t̂u@1, the two peaks are well separated, so that

I a~ t̂,N!5H Ja~ t̂ !1Ka~N!

J̃a~ t̂ !1Ka~N!

if a1c.21
if a1c,21. ~86!

Focusing onI 0( t̂,N), we now want to evaluate the relativ
contributions of the two peaks that contribute to its in
grand. As this integrand is, up to some normalization c
stant, equal toP̂N( t̂, t̂), the analysis will rely on the estima
tion of the different contributions inP̂N( t̂, t̂), whose relative
importance is shown in Fig. 5 for various values ofN. Figure
6 presents the level curves of the ratioK0(N)/J0( t̂) in the
( t̂2N) space, leading us to discriminate the domain of
lidity of TL from the regime where NUM presented ju
above holds. In conclusion,Ka(N) is negligible with respect
to, respectively,Ja( t̂) or J̃a( t̂) in the numerical regime~see
Table V for a comparative summary of all the results!. This
leads to the following estimation, valid whatevera is ~pro-
vided t̂,0):

I a~ t̂,N!'S 2p

n~n21!BD 1/2S 2At̂

nB D ~c1a!/~n21!

3e~n21!B~2At̂/nB!n/~n21!
. ~87!

It is now clear that in this casea1c,21, and especially for
a50, the thermodynamic limit ofI a( t̂,N) will never be
reached in numerical simulations.

B. Numerical evaluation of the distribution P̂N„ t̂, t̂…
and of its moments

We first evaluate the leading behavior of the distributi
P̂N( t̂, t̂) given in Eq.~49! when restricting to the numerica
regime. In that regime, we have seen thatI 0( t̂,N)' J̃0( t̂),
so that
-
-

-

P̂N~ t̂, t̂ !5
h~ t̂, t̂ !e2A8N2q~121/n! t̂2q

J̃0~ t̂ !
. ~88!

For u t̂u sufficiently large we may now write explicitly the
expression of the various moments on the basis of Eqs.~56!
and ~87!

^ t̂a&5
J̃a~ t̂ !

J̃0~ t̂ !
;S 2 t̂

nB
D a/~n21!

, ~89!

valid whatevera is. All the discussion of both the thermo
dynamic and the numerical regimes~for t̂,0! is summarized
in a comparative way in Table V.

C. Effective numerical exponents

We finally come to the expression of the numerically o
servable scaling laws. Fort̂.0, the thermodynamic limit
given in Sec. VII @Eq. ~80!# is relevant for the numerical
analysis, namely,

RG* ;N n̄ ut̂ ~21c!~n21/d!. ~90!

Conversely, fort̂,0, taken into account Eq.~89! for a51,
we obtain

RG* ;Nnuu t̂u2 ~1/n21! @n2 ~1/d!# ~91!

in the same way as for the casec.21 @Eq. ~72!#. We thus
may summarize the tricritical scaling behavior observed
the numerical regime~that is, for chains of lengthsN,1020!.

RG* ;H N n̄ ut̂ ~21c!@n2 ~1/d!# if t̂.0

Nnuu t̂u2 @1/~n21!# @n2 ~1/d!# if t̂,0.
~92!

This behavior is anomalous in the sense that there are n
two different exponentsnu and n̄u . Note that, accordingly,
there are two different hyperscaling relations holding, r
spectively, fornu and n̄u

~21c!S n2
1

dD5
n2 n̄u

f
,

2S 1

n21D S n2
1

dD5

1

d
2nu

f
. ~93!
in Secs.
TABLE V. Quantitative comparison of the thermodynamic and numerical regimes intending to summarize the analysis presented
VI, VII, and VIII ~for t̂,0!. Here t̂05(2At̂/nB)1/n21 @see Eq.~83!#.

TL

NUMa1c,21 a1c.21

I a( t̂,N) N(11c1a)(121/n)Ca(A8) ; t̂0
(c1a)e(n21)Bt̂ 0

n
; t̂0

(c1a)e(n21)Bt̂ 0
n

^ t̂a&( t̂)
N2a(121/n)Ca(A8)

C0(A8)
N(11c)(121/n) I a( t̂)

C0(A8)
; t̂0

a

I 0( t̂,N) N(11c)(121/n)C0(A8) ; t̂0
ce(n21)Bt̂ 0

n

P̂N( t̂, t̂) N(11c)(121/n)h( t̂, t̂)
C0(A8)

~see Fig. 5! h( t̂, t̂)
I 0( t̂)( t̂)
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FIG. 5. Analytic plot of the normalized distributionP̂N( t̂, t̂) according to Eq.~54! showing the relative contributions of the two peaks
the integrand of Eq.~48! ~for a50! for increasing values ofN and for t̂525, which justifies the computation of the thermodynamic lim
of the normalization factorI N(x)5lN(11c)(121/n)2a/nI 0( t̂,N). @Note that the areas under the three curves are equal because of the
peak ofP̂N( t̂, t̂) in the vicinity of t̂50.#

FIG. 6. t̂2N diagram showing the domains of validity of the analysis presented in Sec. VIII. Three level curves corresp
respectively to the values 0.1, 1, and 10 of the ratioK0(N)/J0( t̂) are drawn. Above the curve of level 10, the thermodynamic limit regi
~TL! is reached and Eqs.~52! and~55! are valid. The domain below the curve of level 0.1, which is nearly entirely embedded in the do
reachable numerically~namelyN,105! is described by equations given in the column NUM of Table V.
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The crossover exponentf is identical in both hyperscaling
relations, equal tof5121/n.

IX. ANALYSIS OF THE NUMERICAL DATA

All the above analysis provides the theoretical framew
for validating the proposed structure of the distributi
PN(t), and for estimating the numerical values of its para
eters. In order to circumvent the numerical difficulties i
duced by the anomalous factortc, we propose the following
alternative to the well-known Binder’s reduced fourth cum
lant @which we recall to beUL532 (^t4&/^t2&2)]

Qexp~x,N![
^t4&^t&2

^t2&3 , ~94!

which is directly accessible from our numerical data. A
cording to Eq.~56!, this quantity theoretically reads

Q~ t̂,N!5
I 4~ t̂,N!I 1

2~ t̂,N!

I 2
3~ t̂,N!

. ~95!

~i! The great advantage in introducing this new quantity
to get rid of I 0( t̂,N) which does not behave similarly in th
thermodynamic and numerical regimes. Indeed, in view
the results presented in Table V, the first remarkable prop
of Q is that it reduces in the numerical domain~which we
recall to be the domain relevant for the interpretation of
numerical data! to

QNUM~ t̂ !5
J4~ t̂ !J1

2~ t̂ !

J2
3~ t̂ !

. ~96!

Let us stress thatQNUM no longer depends onN, nor onA8,
nor onl.

~ii ! Moreover, at the transition point, namely, whent̂50,
the quantitiesJa( t̂50) (a51,2,4) involved inQNUM are
equal to

Ja~ t̂50!5
1

n
GS a1c11

n DB2 ~a1c11!/n, ~97!

so that

Qu[QNUM~ t̂50!5

GS 51c

n D FGS 21c

n D G2

FGS 31c

n D G3 . ~98!

Coming back to the bare variablex, instead oft̂ which de-
pends on our knowledge ofA and ofn, we draw in Fig. 7 the
curvesQexpt(x,N), representingQ as a function ofx for dif-
ferent values ofN. Due to the fact thatQu does not depend
on N @Eq. ~98!#, all these curves are theoretically meant
cross in a unique point, appearing to be the transition p
x5A, which is accurately verified on the numerical curv
k

-

-

-

s

f
ty

e

nt

~see Fig. 7!. Note that this procedure for obtainingA does
not require any previous knowledge of the other parame
~A8, l, B, andc!.

~iii ! A third fruitful property of Q is that it gives a direct
access to the value ofc. As a matter of fact,Q is a decreas-
ing function of x, then is maximal inx50, which corre-
sponds tot̂→` and makes it possible to use Eq.~60!, which
leads to

Qmax5
~41c!~31c!

~21c!2 , ~99!

whose remarkable feature is to depend exclusively onc and
to be quickly decreasing aroundc* 521. In consequence
this controls in a very efficient way the numerical estimati
of the value ofc. Figure 7 clearly shows thatc,21, in fact
that c,21.07 which is compatible with the theoretical in
terval obtained using Eq.~27! and with the numerical value
previously obtained in Sec. IV.

~iv! A last interest of this quantityQ( t̂) is that its slope at
the transition point gives access toB through the following
expression:

Q8~ t̂50!

Q~ t̂50!
5B21/nF 3

GS 41c

n D
GS 31c

n D 22

GS 31c

n D
GS 21c

n D

2

GS 61c

n D
GS 51c

n D G . ~100!

As displayed in Figure 8, the curvesQNUM( t̂) collapse onto
a universal one forn52.160.1. This value is consistent with
the value ofn given by Eq.~98!. We also note in Fig. 8 tha
Qexpt(x5`)'1 ~corresponding tot̂52`! as expected. The
whole set of numerical values of the parameters ofPN(t) is
given in Table IV.

Focusing on the transition point (t̂50), we draw in Figs.
9, 10 and 11, respectively, the numerical curves

t̂→
taPN~ t !eANteA8~Nt!2q

lN11c2 @~a1c!/n# , a50,1,2 ~101!

for different values ofN. For each value ofa50, 1, or 2,
the curves collapse as expected on the universal

t̂→ t̂ah( t̂50,t)5 t̂a1ce2Bt̂n which concludes the validation
of our theoretical predictions and comforts the numeri
values given in Table IV.

Figure 9~for a50! clearly evidences the divergence du
to the factortc. Figure 10~for a51! still exhibiting a diver-
gence int̂50 supports once more thatc,21. Figure 11~for
a52! highlights the domain where the value ofB is sensi-
tive.

Finally, we may now give improved values fornu , n̄u and
f using the best values ofn and c given in Table IV and
n50.588:
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FIG. 7. Generalized cumulantQexpt defined in Eq.~94!, as a function ofx. The three curves corresponding to values ofN550, 100, 150
intersect in a single point~x5xu , Q5Qu! with xu5A. This gives access to the numerical value ofA50.021560.0005.Qu is given in Eq.
~98!. For c521.07, Qmax56.54 according to Eq.~99!. Note that the observed value ofQexpt(x50) for N5150 is very close and obviously
provides a lower bound forQmax. For the best valuec521.13, Qmax57.09, which corresponds to the upper dashed line.

FIG. 8. Same as Fig. 7, but using the rescaled variablet̂ for n52. The three curves obtained forN550, 100, and 150 now collapse. Th
dashed line accounts for the slope att̂50 and for the asymptotic values ofQ: Qexpt(x5`)51 (t̂52`) andQexpt(x50)57.09 (t̂51`).
The inset displays a sketch ofQ( t̂) in the thermodynamic limit.
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FIG. 9. Numerical analysis corresponding to Eq.~101! with a50 for three different chain lengthsN550, 100, and 150. The plain line
is the theoretical prediction.
ap-
a

eter
ed
nu50.45560.006,

n̄u50.47260.008, ~102!

f50.4860.02.
X. CONCLUSION

In this paper we have presented a phenomenological
proach to the statistics of a self-avoiding walk, relying on
numerical simulation. We showed a relevant order param
t on which a geometric coil-globule transition is perceiv
FIG. 10. Same as Fig. 9 but fora51 in Eq. ~101!.
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FIG. 11. Same as Fig. 9, but fora52 in Eq. ~101!.
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when adding a formal Boltzmann factor; let us recall that t
factor intends to weight differently the corresponding su
spaces of conformations~coil or globule! when the tempera
ture is varied. Such an intrinsic transition allows us to giv
precise meaning to the coil and the globule phases. We h
identified and modeled the different contributions exhibit
by our numerical results, which allowed us to reconstruct
distributionPN(t) of the order parametert. We have exhib-
ited an unexpected contributiontc to PN(t), and we related
the associated exponentc to the well-known enhancemen
exponents in the coil and the globule phases. We showed
scaling variablest̂ and t̂ of the transition, and derived th
corresponding scaling laws. It has been proven that a thr
old valuec* 521 separates two qualitatively different sca
ing behaviors, namely, a standard tricritical behavior
c.c* and an anomalous scaling forc,c* in the thermody-
namic limit; the latter casec,21 is the observed situation
An additional consequence of this valuec,21 is the dra-
matically slow rate of convergence toward the thermo
n
,

s
-

a
ve

e

he

h-

r

-

namic limit, which imposes an effective regime~the so-
called ‘‘numerical regime’’ relying on finite-size scaling! in
order to interpret the numerical data correctly@23#.

All the difficulties encountered in the numerical analys
stem from the anomalous valuec,21; we expect that these
problems might remain in more physical situations. In ord
to circumvent such problems, the numerical analysis co
take advantage of the extended cumulantQ introduced in
Sec. IX. We also suggest thatRG* introduced in Sec. VII
might be an interesting alternative quantity more conveni
than the usual radius of gyrationRG recalled in Sec. I.

We claim that the various contributions appearing in t
structure ofPN(t) provide the geometric basis underlyin
physical coil-globule transitions, in the sense where it d
scribes the influence of both the topology of the chain a
the self-avoiding constraints. The way of implementing t
geometric description in a real situation, through a factori
tion procedure, has been tackled in a preceding paper@19#,
and will be soon extensively exposed by the authors.
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